【題目】三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中點的橫、縱坐標分別為第名工人上午的工作時間和加工的零件數(shù),點的橫、縱坐標分別為第名工人下午的工作時間和加工的零件數(shù),.為第名工人在這一天中加工的零件總數(shù),記為第名工人在這一天中平均加工的零件數(shù),則,,中的最大值與,中的最大值分別是(

A.,B.,

C.,D.,

【答案】A

【解析】

根據(jù)題意可知:的縱坐標的縱坐標,為線段中點與原點連線的斜率,故結(jié)合圖像即可得出結(jié)論.

①因為為第名工人在這一天中加工的零件總數(shù),

的縱坐標的縱坐標;

的縱坐標的縱坐標;

的縱坐標的縱坐標;

結(jié)合圖像可知:,,中的最大值為;

②因為為第名工人在這一天中平均加工的零件數(shù),

為線段中點與原點連線的斜率,

結(jié)合上圖可知:,,中的最大值是;

故選:A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】程大位是明代著名數(shù)學家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)解關(guān)于的不等式;

2)若對于任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年俄羅斯索契冬奧會某項目的選拔比賽中,、兩個代表隊進行對抗賽,每隊三名隊員,隊隊員是、,隊隊員是、,按以往多次比賽的統(tǒng)計,對陣隊員之間勝負概率如下表,現(xiàn)按表中對陣方式出場進行三場比賽,每場勝隊得分,負隊得分,設隊、隊最后所得總分分別為、.

對陣隊員

隊隊員勝

隊隊員負

1)求隊得分為分的概率;

2)求的分布列;并用統(tǒng)計學的知識說明哪個隊實力較強.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,,側(cè)面為等邊三角形且垂直于底面,的中點.

(1)在棱上取一點使直線∥平面并證明;

(2)在(1)的條件下,當棱上存在一點,使得直線與底面所成角為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調(diào)查,其中女生有55.下面是根據(jù)調(diào)查結(jié)果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:

將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康A類學生,已知體育健康A類學生中有10名女生.

(Ⅰ)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否認為達到體育健康A類學生與性別有關(guān)?

非體育健康A類學生

體育健康A類學生

合計

男生

女生

合計

(Ⅱ)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康類學生中有2名女生,若從體育健康類學生中任意選取2人,求至少有1名女生的概率.

附:

P

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Ox2+y23上的一動點Mx軸上的投影為N,點P滿足

1)求動點P的軌跡C的方程;

2)若直線l與圓O相切,且交曲線C于點AB,試求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某景區(qū)內(nèi)有一半圓形花圃,其直徑AB6,O是圓心,且OCAB.OC上有一座觀賞亭Q,其中∠AQC,.計劃在上再建一座觀賞亭P,記∠POBθ.

1)當θ時,求∠OPQ的大;

2)當∠OPQ越大時,游客在觀賞亭P處的觀賞效果越佳,求游客在觀賞亭P處的觀賞效果最佳時,角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

同步練習冊答案