7.已知向量$\overrightarrow{a}$=(1,-3),$\overrightarrow$=(-2,-4),則( 。
A.$\overrightarrow{a}$$⊥\overrightarrow$B.$\overrightarrow{a}$∥$\overrightarrow$C.$\overrightarrow{a}$⊥($\overrightarrow{a}$$-\overrightarrow$)D.$\overrightarrow{a}$∥($\overrightarrow{a}$$-\overrightarrow$)

分析 利用向量坐標運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系即可得出.

解答 解:∵$\overrightarrow{a}$-$\overrightarrow$=(3,1),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=3-3=0,
∴$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$).
故選:C.

點評 本題考查了向量坐標運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知實數(shù)x,y滿足關(guān)系$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 1≤y≤3\end{array}\right.$,則$z=\frac{1}{2}x-y$的取值范圍為(-$\frac{7}{2}$,$-\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=(x+a)lnx,g(x)=$\frac{{x}^{2}}{{e}^{x}}$,已知曲線y=f(x)在點(1,f(1))處的切線與直線2x-y=0平行.
(Ⅰ)若方程f(x)=g(x)在(k,k+1)(k∈N)內(nèi)存在唯一的根,求出k的值.
(Ⅱ)設(shè)函數(shù)m(x)=min{f(x),g(x)}(min{p、q})表示p,q中的較小值),求m(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某校一個校園景觀的主題為“托起明天的太陽”,其主體是一個半徑為5米的球體,需設(shè)計一個透明的支撐物將其托起,該支撐物為等邊圓柱形的側(cè)面,厚度忽略不計.軸截面如圖所示,設(shè)∠OAB=α.(注:底面直徑和高相等的圓柱叫做等邊圓柱.)
(1)用α表示圓柱的高;
(2)實踐表明,當球心O和圓柱底面圓周上的點D的距離達到最大時,景觀的觀賞效果最佳,求此時α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.計算:sin20°sin100°-cos160°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)定義在區(qū)間[x1,x2]上的函數(shù)y=f(x)的圖象為C,A(x1,f(x1))、B(x2,f(x2)),且(x,f(x))為圖象C上的任意一點,O為坐標原點,當實數(shù)λ滿足x=λx1+(1+λ)x2時,記向量$\overrightarrow{ON}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,若|$\overrightarrow{MN}$|≤k恒成立,則稱函數(shù)y=f(x)在區(qū)間[x1,x2]上可在標準k下線性近似,其中k是一個確定的正數(shù).
(1)設(shè)函數(shù)f(x)=x2在區(qū)間[0,1]上可在標準k下線性近似,求k的取值范圍;
(2)已知函數(shù)g(x)=lnx的反函數(shù)為h(x),函數(shù)F(x)=[h(x)]a-x,(a≠0),點C(x1,F(xiàn)(x1)),D(x2,F(xiàn)(x2)),記直線CD的斜率為μ,若x1-x2<0,問:是否存在x0∈(x1,x2),使F′(x0)>μ成立?若存在,求x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)y=cos2$\frac{x}{2}$-sin2$\frac{x}{2}$的一條對稱軸方程是( 。
A.x=-$\frac{π}{2}$B.x=$\frac{π}{4}$C.x=0D.x=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)a=0.91.1,b=1.10.9,c=log0.91.1,則a,b,c的大小關(guān)系正確的是( 。
A.b>a>cB.a>b>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=|2x-a|,g(x)=x+1.
(1)若a=1,求不等式f(x)≤1的解集;
(2)對任意的x∈R,f(x)+|g(x)|≥a2+2a(a>0)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案