1.執(zhí)行如圖所示的程序框圖,如果輸出T=6,那么判斷框內(nèi)應(yīng)填入的條件是( 。
A.k<32B.k<33C.k<64D.k<65

分析 根據(jù)程序框圖,寫(xiě)出運(yùn)行結(jié)果,根據(jù)程序輸出的結(jié)果是T=6,可得判斷框內(nèi)應(yīng)填入的條件.

解答 解:模擬執(zhí)行程序框圖,可得程序框圖的功能是計(jì)算并輸出S=log24×log46×…×logk(k+2)的值,
∵輸出的值為6,又S=log24×log46×…×logk(k+2)=$\frac{lg4}{lg2}$×$\frac{lg6}{lg4}$×…×$\frac{lg(k+2)}{lgk}$=$\frac{lg(k+2)}{lg2}$=log2(k+2)=6,
∴跳出循環(huán)的k值為64,
∴判斷框的條件為k<64?.
故選:C.

點(diǎn)評(píng) 本題考查程序框圖,尤其考查循環(huán)結(jié)構(gòu).對(duì)循環(huán)體每次循環(huán)需要進(jìn)行分析并找出內(nèi)在規(guī)律.本題屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABO中,點(diǎn)C是點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn),點(diǎn)D是OB靠近B的三等分點(diǎn),DC與OA交于E點(diǎn),設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OC}$,$\overrightarrow{CD}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知過(guò)原點(diǎn)的直線(xiàn)l與圓C:x2+y2-6x+5=0相交于不同的兩點(diǎn)A、B,且線(xiàn)段AB中點(diǎn)坐標(biāo)為(2,$\sqrt{2}$),則弦長(zhǎng)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線(xiàn)AB被圓O:x2+y2=1截得的弦長(zhǎng)為$\frac{2\sqrt{5}}{5}$
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)B且斜率為k的動(dòng)直線(xiàn)l與橢圓C的另一個(gè)交點(diǎn)為M,$\overrightarrow{ON}$=λ($\overrightarrow{OB}+\overrightarrow{OM}$),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=|xex|.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若g(x)=f2(x)+tf(x)(t∈R),滿(mǎn)足g(x)=-1的x有四個(gè),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知曲線(xiàn)C1:$\left\{\begin{array}{l}x=12cosθ\\ y=4sinθ\end{array}\right.$(參數(shù)θ∈R),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為$ρ=\frac{3}{{cos(θ+\frac{π}{3})}}$,點(diǎn)Q的極坐標(biāo)為$(4\sqrt{2},\frac{π}{4})$.
(1)將曲線(xiàn)C2的極坐標(biāo)方程化為直角坐標(biāo)方程,并求出點(diǎn)Q的直角坐標(biāo);
(2)設(shè)P為曲線(xiàn)C1上的點(diǎn),求PQ中點(diǎn)M到曲線(xiàn)C2上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.甲、乙兩企業(yè)根據(jù)賽事組委會(huì)要求為獲獎(jiǎng)?wù)叨ㄗ瞿彻に嚻纷鳛楠?jiǎng)品,其中一等獎(jiǎng)獎(jiǎng)品3件,二等獎(jiǎng)獎(jiǎng)品6件;制作一等獎(jiǎng)、二等獎(jiǎng)所用原料完全相同,但工藝不同,故價(jià)格有所差異.甲廠收費(fèi)便宜,但原料有限,最多只能制作4件獎(jiǎng)品,乙廠原料充足,但收費(fèi)較貴,其具體收費(fèi)如表所示,則組委會(huì)定做該工藝品的費(fèi)用總和最低為4900元.
獎(jiǎng)品
繳費(fèi)(無(wú)/件)
工廠
一等獎(jiǎng)獎(jiǎng)品二等獎(jiǎng)獎(jiǎng)品
500400
800600

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)(ω>0),若f($\frac{π}{6}$)=f($\frac{π}{3}$),且f(x)在區(qū)間($\frac{π}{6}$,$\frac{π}{3}$)上有最小值,無(wú)最大值,則ω=( 。
A.$\frac{2}{3}$B.$\frac{14}{3}$C.$\frac{26}{3}$D.$\frac{38}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)集合U={0,1,2,3,4,5},M={0,3,5},N={1,4,5},則M∩(∁UN)=( 。
A.{5}B.{0,3}C.{0,2,3,5}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案