【題目】隨機(jī)變量ξ的分布列如表,其中a,b,c成等差數(shù)列.若E(ξ)= ,則D(ξ)=( )
ξ | 1 | 2 | 3 |
P | a | b | c |
A.
B.
C.
D.
【答案】D
【解析】解:∵a,b,c成等差數(shù)列,E(ξ)= ,
∴由隨機(jī)變量ξ的分布列的性質(zhì)得:
,
解得a= ,b= ,c= ,
∴D(ξ)=(1﹣ )2× +(2﹣ )2× +(3﹣ )2× = .
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品的保鮮時(shí)間t(單位:小時(shí))與儲(chǔ)藏溫度x(單位:℃)滿足函數(shù)關(guān)系t=且該食品在4℃的保鮮時(shí)間是16小時(shí)。已知甲在某日上午10時(shí)購(gòu)買了該食品,并將其遺放在室外,且此日的室外溫度隨時(shí)間變化如圖所示。給出以下四個(gè)結(jié)論:
①該食品在6℃的保鮮時(shí)間是8小時(shí);
②當(dāng)x∈[-6,6]時(shí),該食品的保鮮時(shí)間t隨著x增大而逐漸減少;
③到了此日13時(shí),甲所購(gòu)買的食品還在保鮮時(shí)間內(nèi);
④到了此日14時(shí),甲所購(gòu)買的食品已然過了保鮮時(shí)間。
其中,所有正確結(jié)論的序號(hào)是__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn),且函數(shù)= 是偶函數(shù)
(1)求的解析式;
(2)已知,求函數(shù)在的最大值和最小值
(3)函數(shù)的圖象上是否存在這樣的點(diǎn),其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個(gè)完全平方數(shù)?如果存在,求出這樣的點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列四個(gè)正方體中,為正方體的兩個(gè)頂點(diǎn),為所在棱的中點(diǎn),則在這四個(gè)正方體中,直接與平面不平行的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)當(dāng)點(diǎn)E為BC的中點(diǎn)時(shí),試判斷EF與平面PAC的位置關(guān)系,并說(shuō)明理由;
(2)證明:無(wú)論點(diǎn)E在邊BC的何處,都有PE⊥AF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果對(duì)定義在R上的函數(shù)f(x)對(duì)任意兩個(gè)不相等的實(shí)數(shù)x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,則稱函數(shù)f(x)為“H函數(shù)”.給出下列函數(shù)①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函數(shù)”的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱ABC-A1B1C1中,△ABC與△A1B1C1都為正三角形且AA1⊥面ABC,F、F1分別是AC,A1C1的中點(diǎn).
求證:(1)平面AB1F1∥平面C1BF;
(2)平面AB1F1⊥平面ACC1A1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分別為CD和PC的中點(diǎn).
求證:(1) BE∥平面PAD;
(2) 平面BEF⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)在[ , ]上的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com