已知橢圓
的中心在原點(diǎn),它的左右兩個(gè)焦點(diǎn)分別為
,過右焦點(diǎn)
且與
軸垂直的直線
與橢圓
相交,其中一個(gè)交點(diǎn)為
(1) 求橢圓
的方程。
(2)設(shè)橢圓
的一個(gè)頂點(diǎn)為
直線
交橢圓
于另一點(diǎn)
,求
的面積.
18. 解:(1)
,且
將
代入橢圓
的方程得
又
,
, 3分
解得
,
橢圓
的方程為
。 6分
(2)
, 直線
的方程為
, 8分
由
消去
得
解得
,
點(diǎn)
的縱坐標(biāo)為
。 11分
. 14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓
:
兩個(gè)焦點(diǎn)之間的距離為2,且其離心率為
.
(Ⅰ) 求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ) 若
為橢圓
的右焦點(diǎn),經(jīng)過橢圓的上頂點(diǎn)B的直線與橢圓另一個(gè)交點(diǎn)為A,且滿足
,求
外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
直線
,當(dāng)
變化時(shí),直線被橢圓
截得的最大弦長是( )
A.4 | B.2 | C. | D.不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
設(shè)
上的兩點(diǎn),
滿足
,橢圓的離心率
短軸長為2,0為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦
點(diǎn)
F1、
F2在
x軸上,長軸
A1A2的長為4,左準(zhǔn)線
l與
x軸的交點(diǎn)為
M,
∶
= 2∶1.
1、求橢圓的方程;
2、若點(diǎn)
P在直線
l上運(yùn)動(dòng),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是橢圓
的左焦點(diǎn),
是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
,點(diǎn)
在
軸上,
,
三點(diǎn)確定的圓
恰好與直線
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過
作斜率為
的直線
交橢圓于
兩點(diǎn),
為線段
的中點(diǎn),設(shè)
為橢圓中心,射線
交橢圓于點(diǎn)
,若
,若存在求
的值,若不存在則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
的左焦點(diǎn)為
, 點(diǎn)
在橢圓上, 若線段
的中點(diǎn)
在
軸上, 則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓
:
的右焦點(diǎn)為
,離心率為
.
(Ⅰ)求橢圓
的方程及左頂點(diǎn)
的坐標(biāo);
(Ⅱ)設(shè)過點(diǎn)
的直線交橢圓
于
兩點(diǎn),若
的面積為
,求直線
的方程.
查看答案和解析>>