已知x、y、z均為正數(shù),求證:

 

見解析

【解析】(證法1:綜合法)因?yàn)閤、y、z都是正數(shù),所以.同理可得,.將上述三個(gè)不等式兩邊分別相加,并除以2,得

.

(證法2:分析法)因?yàn)閤、y、z均為正數(shù),要證.只要證,只要證x2+y2+z2≥yz+zx+xy,只要證(x-y)2+(y-z)2+(z-x)2≥0,而(x-y)2+(y-z)2+(z-x)2≥0顯然成立,所以原不等式成立.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省高郵市高二學(xué)情檢測數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示,在四棱錐P—ABCD中,底面ABCD是矩形,側(cè)棱PA垂直于底面,E、F分別是AB、PC的中點(diǎn),PA=AD.

求證:(1)CD⊥PD;(2)EF⊥平面PCD.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第3課時(shí)練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(θ為參數(shù)),試求直線l與曲線C的普通方程,并求出它們的公共點(diǎn)的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第2課時(shí)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].

(1)求m的值;

(2)若a,b,c∈R,且=m,求證:a+2b+3c≥9.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第2課時(shí)練習(xí)卷(解析版) 題型:解答題

求函數(shù)y=的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第2課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)a、b、m∈R+,且,求證:a>b.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-4第1課時(shí)練習(xí)卷(解析版) 題型:解答題

在極坐標(biāo)系中,已知圓C經(jīng)過點(diǎn)P,圓心為直線ρsin=-與極軸的交點(diǎn),求圓C的極坐標(biāo)方程.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-2第2課時(shí)練習(xí)卷(解析版) 題型:解答題

設(shè)曲線2x2+2xy+y2=1在矩陣A=(a>0)對(duì)應(yīng)的變換作用下得到的曲線為x2+y2=1.

(1)求實(shí)數(shù)a、b的值;

(2)求A2的逆矩陣.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥選修4-1第2課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,AB是圓O的直徑,點(diǎn)C在圓O上,延長BC到D使BC=CD,過C作圓O的切線交AD于E.若AB=6,ED=2,求BC的值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案