【題目】已知四棱錐P﹣ABCD的頂點都在球O的球面上,底面ABCD是邊長為2的正方形,且PA⊥面ABCD,若四棱錐的體積為,則該球的體積為_____.
【答案】8π.
【解析】
首先根據(jù)條件求出PA,再把四棱錐P﹣ABCD補成一個以ABCD為底、PA為側(cè)棱的長方體,則這個長方體的外接球就是四棱錐P﹣ABCD的外接球,球心O就是PC的中點,求出長方體的體對角線長,即得解.
設(shè)此球半徑為R,
因底面ABCD是邊長為2的正方形,且PA⊥面ABCD,若四棱錐的體積為,
則2×2×PA,∴PA=4,
可以把四棱錐P﹣ABCD補成一個以ABCD為底、PA為側(cè)棱的長方體,
則這個長方體的外接球就是四棱錐P﹣ABCD的外接球,球心O就是PC的中點,
∴(2R)2=PC2=AP2+AB2+BC2=42+22+22=24,∴R,
則該球的體積為.
故答案為:.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準(zhǔn)備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?并指出是正相關(guān)還是負相關(guān);
(2)①求出關(guān)于的回歸方程;
②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預(yù)測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據(jù):,,.
參考公式:相關(guān)系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點為,右頂點為.已知,其中為原點, 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點的直線與橢圓交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù),按十位數(shù)字為莖,個位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.
(1)求的值;
(2)分別求出甲、乙兩組數(shù)據(jù)的方差和,并由此分析兩組技工的加工水平;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的離心率為,左,右焦點分別為F1,F2,過F1的直線交橢圓C于A,B兩點,△AF2B的周長為8,
(1)求該橢圓C的方程.
(2)設(shè)P為橢圓C的右頂點,Q為橢圓C與y軸正半軸的交點,若直線l:yx+m,(﹣1<m<1)與圓C交于M,N兩點,求P、M、Q、N四點組成的四邊形面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓()的左、右焦點為,右頂點為,上頂點為.已知.
(1)求橢圓的離心率;
(2)設(shè)為橢圓上異于其頂點的一點,以線段為直徑的圓經(jīng)過點,經(jīng)過原點的直線與該圓相切,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),是的導(dǎo)數(shù)(e為自然對數(shù)的底數(shù)).
I.當(dāng)時,求曲線在點()處的切線方程;
II.若當(dāng)時,不等式恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校實行選科走班制度,張毅同學(xué)的選擇是地理生物政治這三科,且生物在B層班級,該校周一上午選科走班的課程安排如下表所示,張毅選擇三個科目的課各上一節(jié),另外一節(jié)上自習(xí),則他不同的選課方法有__________種
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理1班 | 化學(xué)A層3班 | 地理2班 | 化學(xué)A層4班 |
生物A層1班 | 化學(xué)B層2班 | 生物B層2班 | 歷史B層1班 |
物理A層1班 | 生物A層3班 | 物理A層2班 | 生物A層4班 |
物理B層2班 | 生物B層1班 | 物理B層1班 | 物理A層4班 |
政治1班 | 物理A層3班 | 政治2班 | 政治3班 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com