19.在平面直角坐標(biāo)系xOy中,M為不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$所表示的區(qū)域上一動點,已知點A(-1,2),則直線AM斜率的最小值為(  )
A.-$\frac{2}{3}$B.-2C.0D.$\frac{4}{5}$

分析 作出不等式組對應(yīng)的平面區(qū)域,利用直線斜率公式進(jìn)行求解即可.

解答 解:作出不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$對應(yīng)的平面區(qū)域如圖:
點A(-1,2),
則當(dāng)M位于B時,AM的斜率最大,
當(dāng)M位于O時,AM的斜率最。
O(0,0),此時AM的斜率k=$\frac{2-0}{-1-0}$=-2;
故選:B.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用直線的斜率公式是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=x3+ax2+bx+c,過曲線y=f(x)上的點(1,f(1))的切線方程為y=3x+1
(1)若y=f(x)在x=-2時有極值,求f(x)的表達(dá)式;
(2)在(1)的條件下,求函數(shù)y=f(x)在[-3,1]上的最大值;
(3)若函數(shù)y=f(x)在區(qū)間(-∞,1)上單調(diào)遞增,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.集合A={x|x2-x=0},B={x|x5-4x2+5x-2=0},則A∩B={1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義在R上的函數(shù)f(x)滿足f(x-2)=-f(x),且在區(qū)間[0,1]上是增函數(shù),又函數(shù)f(x-1)的圖象關(guān)于點(1,0)對稱,若方程f(x)=m在區(qū)間[-4,4]上有4個不同的根,則這些根之和為( 。
A.-3B.±3C.4D.±4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列說法中,錯誤的個數(shù)有1個:
①平行于同一條直線的兩個平面平行.     
②平行于同一個平面的兩個平面平行.
③一個平面與兩個平行平面相交,交線平行.
④一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a1=a,Sn是數(shù)列{an}的前n項和,且滿足:Sn2=3n2an+Sn-12,an≠0,n=2,3,4,…,設(shè)數(shù)列{bn}滿足:bn=a2n,n∈N*
(1)證明數(shù)列{bn}是等差數(shù)列,并求出數(shù)列{bn}的公差;
(2)確定a的取值集合M,使a∈M時,數(shù)列{an}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xoy中,橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,過焦點F作x軸的垂線交橢圓于A點,且|AF|=$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點A關(guān)于點O的對稱點為B,直線BF交橢圓于點C,求∠BAC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求證:AC⊥平面BB1C1C;
(2)若P為A1B1的中點,求證:DP∥平面BCB1,且DP∥平面ACB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象經(jīng)過怎樣的平移后所得的圖象關(guān)于點$({-\frac{π}{12},0})$中心對稱(  )
A.向左平移$\frac{π}{12}$單位B.向左平移$\frac{π}{6}$單位C.向右平移$\frac{π}{12}$單位D.向右平移$\frac{π}{6}$單位

查看答案和解析>>

同步練習(xí)冊答案