14.下列說法中,錯誤的個數(shù)有1個:
①平行于同一條直線的兩個平面平行.     
②平行于同一個平面的兩個平面平行.
③一個平面與兩個平行平面相交,交線平行.
④一條直線與兩個平行平面中的一個相交,則必與另一個平面相交.

分析 平行于同一條直線的兩個平面平行或相交;
由面面平行的判定定理,可得結(jié)論;
由面面平行的性質(zhì)定理,可得結(jié)論;
利用反證法,可得結(jié)論.

解答 解:平行于同一條直線的兩個平面平行或相交,即①不正確;
由面面平行的判定定理,可得平行于同一個平面的兩個平面平行,即②正確;
由面面平行的性質(zhì)定理,可得一個平面與兩個平行平面相交,交線平行,即③正確;
利用反證法,可得一條直線與兩個平行平面中的一個相交,則必與另一個相交,即④正確.
故答案為:1.

點評 本題考查空間線面位置關(guān)系,熟練掌握線面的位置關(guān)系是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知圓柱的底面直徑和高都等于球的直徑,則球的表面積與圓柱的表面積之比是2:3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合M={x|ax2-2x+3=0}中有一個元素,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知f(x)=log2(2x+a)的定義域為(0,+∞).
(1)求a的值;
(2)若g(x)=log2(2x+1),且關(guān)于x的方程f(x)=m+g(x)在[1,2]上有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}-2x,x≤0}\\{{x}^{2}-4x+3,x>0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{|lnx|,x>0}\end{array}\right.$,則函數(shù)h(x)=g(f(x))-1的零點個數(shù)為( 。﹤.
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在平面直角坐標系xOy中,M為不等式組$\left\{\begin{array}{l}3x-y-6≤0\\ x-y+2≥0\\ x≥0,y≥0\end{array}\right.$所表示的區(qū)域上一動點,已知點A(-1,2),則直線AM斜率的最小值為( 。
A.-$\frac{2}{3}$B.-2C.0D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知圓O:x2+y2=4,直線$l:x+\sqrt{2}y-6=0$,則圓O上任意一點A到直線l的距離小于$\sqrt{3}$的概率為( 。
A.$\frac{π}{6}$B.$\frac{1}{3}$C.$\frac{π}{12}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某只股票經(jīng)歷了l0個跌停(每次跌停,即下跌l0%)后需再經(jīng)過10個漲停(每次漲停,即上漲10%)就可以回到原來的凈值;
③某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部;數(shù)學平均分分別是a、b,則這兩個級部的數(shù)學平均分為$\frac{na}{m}+\frac{mb}{n}$.
④某中學采用系統(tǒng)抽樣方法,從該校高一年級全體800名學生中抽50名學生做牙齒健康檢查,現(xiàn)將800名學生從001到800進行編號,已知從497--512這16個數(shù)中取得的學生編號是503,則初始在第1小組00l~016中隨機抽到的學生編號是007.
其中真命題的個數(shù)是(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖是一個幾何體的三視圖,若它的體積是3,則a=1.

查看答案和解析>>

同步練習冊答案