已知平行四邊形ABCD(圖1)中,AB=4,BC=5,對(duì)角線AC=3,將三角形ACD沿AC折起至PAC位置(圖2),使二面角為600,G,H分別是PA,PC的中點(diǎn).

(1)求證:PC平面BGH;
(2)求平面PAB與平面BGH夾角的余弦值.

(1)詳見(jiàn)解析;(2)平面PAB與平面BGH夾角的余弦值

解析試題分析:(1)求證: 平面,證明線面垂直,只需證明線和平面內(nèi)兩條相交直線垂直即可,由于的中位線,,所以,由已知,對(duì)角線,得,從而可得,即,即,只需再找一條垂線即可,
問(wèn)題得證,要證,只要即可,由已知二面角為600,可找二面角的平面角,故過(guò)C作,連,則,這樣可證得,從而得證;(2)求平面PAB與平面BGH夾角的余弦值,求二面角的大小,可采用向量法來(lái)求,以CE的中點(diǎn)O為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由題意可得各點(diǎn)的坐標(biāo),分別找出兩個(gè)平面的法向量,即可求出平面PAB與平面BGH夾角的余弦值.
試題解析:(1)證明:過(guò)C作,連BE,PE
,
四邊形是矩形,,
平面PEC,
是正三角形
平面PEC
=5=BC,
而H是PC的中點(diǎn),,的中位線,,
,平面BGH.
(2)以CE的中點(diǎn)O為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,
,,
先求平面PAB的法向量為,而平面BGH的法向量為,
設(shè)平面PAB與平面BGH的夾角為,則.

考點(diǎn):直線與平面垂直的判定;二面角的平面角及求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在多面體中,四邊形是正方形,,,,.

(1)求證:面;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,為正三角形,平面,的中點(diǎn).

(1)求證:平面
(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在幾何體中,點(diǎn)在平面ABC內(nèi)的正投影分別為A,B,C,且,E為中點(diǎn),

(1)求證;CE∥平面,
(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在棱長(zhǎng)為2的正方體中,的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,平面,底面為直角梯形,,,,

(1)求證:⊥平面;
(2)求異面直線所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面為直角梯形,垂直于底面ABCD,PA=AD=AB=2BC=2,M,N分別為PC,PB的中點(diǎn).

(Ⅰ)求證:PB⊥DM;
(Ⅱ)求點(diǎn)B到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱中,四邊形為菱形,,四邊形為矩形,若,,.

(1)求證:
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐中,平面是正三角形,的交點(diǎn)恰好是中點(diǎn),又,,點(diǎn)在線段上,且

(1)求證:;
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案