【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為120°的扇形廣場內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點(diǎn)間距離為定長 米.
(1)當(dāng)∠BAC=45°時,求觀光道BC段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中A、B兩點(diǎn)的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.

【答案】
(1)解:在△ABC中,由已知及正弦定理得 ,


(2)解:設(shè)CA=x,CB=y,x,y∈(0,200],

在△ABC中,AB2=AC2+CB2﹣2ACCBcos120°,即 ,

,

故x+y≤120,當(dāng)且僅當(dāng)x=y=60時,x+y取得最大值,

∴當(dāng)A、B兩點(diǎn)各距C點(diǎn)60米處時,觀光道路總長度達(dá)到最長,最長為


【解析】(1)由已知及正弦定理即可得解BC的值.(2)設(shè)CA=x,CB=y,x,y∈(0,200],利用余弦定理可求 ,結(jié)合基本不等式可求x+y≤120,從而可求觀光道路總長度最長值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x),定義
(Ⅰ)寫出函數(shù)F(2x﹣1)的解析式;
(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求實(shí)數(shù)a的值;
(Ⅲ)當(dāng) 時,求h(x)=cosxF(x+sinx)的零點(diǎn)個數(shù)和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=log2(x+2)的定義域是(
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點(diǎn)E,點(diǎn)F為弦CD上異于點(diǎn)E的任意一點(diǎn),連接BF、AF并延長交⊙O于點(diǎn)M、N.
(1)求證:B、E、F、N四點(diǎn)共圓;
(2)求證:AC2+BFBM=AB2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為 ,{bn}為等差數(shù)列,且b1=4,b3=10,則數(shù)列 的前n項和Tn=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為: (t為參數(shù)),它與曲線C:(y﹣2)2﹣x2=1交于A,B兩點(diǎn).
(1)求|AB|的長;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為 ,求點(diǎn)P到線段AB中點(diǎn)M的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠準(zhǔn)備生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3千元,2千元.甲、乙產(chǎn)品都需要在A,B兩種設(shè)備上加工,在每臺A,B上加工一件甲產(chǎn)品所需工時分別為1小時、2小時,加工一件乙產(chǎn)品所需工時分別為2小時、1小時,A、B兩種設(shè)備每月有效使用臺時數(shù)分別為400小時和500小時.如何安排生產(chǎn)可使月收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項等比數(shù)列{an}的前n項和為Sn , 且a2a3=a5 , S4=10S2
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是各項均為正整數(shù)的等差數(shù)列,公差d∈N* , 且{an}中任意兩項之和也是該數(shù)列中的一項.
(1)若a1=4,則d的取值集合為;
(2)若a1=2m(m∈N*),則d的所有可能取值的和為

查看答案和解析>>

同步練習(xí)冊答案