5.PM2.5是指大氣中直徑≤2.5微米的顆粒物,其濃度是監(jiān)測環(huán)境空氣質(zhì)量的重要指標(biāo).當(dāng)PM2.5日均值在0~35(單位為微米/立方米,下同)時,空氣質(zhì)量為優(yōu),在35~75時空氣質(zhì)量為良,超過75時空氣質(zhì)量為污染.某旅游城市2016年春節(jié)7天假期里每天的PM2.5的監(jiān)測數(shù)據(jù)如莖葉圖所示.
(Ⅰ)以上述數(shù)據(jù)統(tǒng)計的相關(guān)頻率作為概率,求該市某天空氣質(zhì)量為污染的概率;
(Ⅱ)某游客在此春節(jié)假期間有2天來該市旅游,已知這2天該市空氣質(zhì)量均不為污染,求這2天中空氣質(zhì)量都為優(yōu)的概率.

分析 (Ⅰ)由莖葉圖數(shù)據(jù)中7天有2天超過75,由此能求出該市某天空氣質(zhì)量為污染的概率.
(Ⅱ)由題得,有5天空氣質(zhì)量不為污染,其中3天優(yōu)設(shè)為A1、A2、A3,2天良設(shè)為B1、B2.利用列舉法能求出這2天中空氣質(zhì)量都為優(yōu)的概率.

解答 解:(Ⅰ)由題中莖葉圖數(shù)據(jù)中7天有2天超過75,
則該市某天空氣質(zhì)量為污染的概率$\frac{2}{7}$.(5分)
(Ⅱ)由題得,有5天空氣質(zhì)量不為污染,其中3天優(yōu)設(shè)為A1、A2、A3,2天良設(shè)為B1、B2
則從這5天中隨機抽取2天,共有:
(A1,A2)、(A1,A3)、(A2,A3)、(A1,B1)、(A1,B2)、(A2,B1)、
(A2,B2)、(A3,B1)、(A3,B2)、(B1,B2)10個基本事件.
其中這2天中空氣質(zhì)量都為優(yōu)的基本事件共有(A1,A2)、(A1,A3)、(A2,A3)3個
所以這2天中空氣質(zhì)量都為優(yōu)的概率為$\frac{3}{10}$.(12分)

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法和莖葉圖性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=sin (3x+$\frac{π}{4}$)的圖象可由函數(shù)y=sin 3x的圖象(  )
A.向左平移$\frac{π}{12}$個單位長度而得到B.向右平移$\frac{π}{12}$個單位長度而得到
C.向左平移$\frac{π}{4}$個單位長度而得到D.向右平移$\frac{π}{4}$個單位長度而得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.四個小動物換座位,開始是鼠、猴、兔、貓分別坐1、2、3、4號位上(如圖),第一次前后排互換座位,第二次左右動物互換座位,…這樣交替進行下去,那么202次互換座位后,小猴坐在第4號座位上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x-3y≥-2\\ 3x-3y≤4\\ x+y≥1\end{array}\right.$,若x2+9y2≥a恒成立,則實數(shù)a的最大值為$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=lnx+x2-3x.
(1)求f(x)的單調(diào)區(qū)間; 
(2)求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.2015年11月11日,天貓交易額以912.17億元的成績刷新了世界紀(jì)錄.隨之快遞的訂單量也激增.某機構(gòu)就雙十一期間快遞公司A的物流速度進行了隨機調(diào)查,如圖是200名受調(diào)查者對快遞公司A的評分(百分制)的頻率分布直方圖,則其得分的眾數(shù)大致為(  )
A.65B.70C.75D.80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在銳角△ABC中,a,b,c分別為A,B,C所對的邊,且$bsinCcosA+asinCcosB=\frac{{\sqrt{3}}}{2}c$.
(1)求角C;
(2)若c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(0,2$\sqrt{3}$),$\overrightarrow$=(1,$\sqrt{3}$).$\overrightarrow{e}$是與$\overrightarrow$同向的單位向量,則$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影為( 。
A.-3B.$\sqrt{3}$C.-$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知三點A(0,2),B(-3,0),C(4,0),矩形EFGH的頂點E、H分別在△ABC的邊AB、AC上,F(xiàn)、G都在邊BC上,不管矩形EFGH如何變化,它的對角線EG、HF的交點P恒在一條定直線l上,那么直線l的方程是2x+y-1=0.

查看答案和解析>>

同步練習(xí)冊答案