10.2015年11月11日,天貓交易額以912.17億元的成績(jī)刷新了世界紀(jì)錄.隨之快遞的訂單量也激增.某機(jī)構(gòu)就雙十一期間快遞公司A的物流速度進(jìn)行了隨機(jī)調(diào)查,如圖是200名受調(diào)查者對(duì)快遞公司A的評(píng)分(百分制)的頻率分布直方圖,則其得分的眾數(shù)大致為(  )
A.65B.70C.75D.80

分析 眾數(shù)位于頻率分布直方圖中最高的小矩形對(duì)應(yīng)的區(qū)間內(nèi),由此能求出結(jié)果.

解答 解:由頻率分布直方圖得速度區(qū)間[70,80)對(duì)應(yīng)的小矩形最高,
∴得分的眾數(shù)大致為75.
故選:C.

點(diǎn)評(píng) 本題考查眾數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意頻率分布直方圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.國(guó)防專(zhuān)業(yè)越來(lái)越受年輕學(xué)子的青睞,為了解某市高三報(bào)考國(guó)防專(zhuān)業(yè)學(xué)生的身高(單位:cm)情況,現(xiàn)將該市某學(xué)校報(bào)考國(guó)防專(zhuān)業(yè)的學(xué)生的身高作為樣本,獲得的數(shù)據(jù)整理后得到如圖所示的頻率分布直方圖,其中樣本數(shù)據(jù)的分組區(qū)間為[165,170),[170,175),[175,180),[180,185),[185,190).已知圖中從左至右第一、三、五小組的頻率之比為1:3:2,其中第三小組的頻數(shù)為15.
(1)求該校報(bào)考國(guó)防專(zhuān)業(yè)學(xué)生的總?cè)藬?shù)n;
(2)若用這所學(xué)校報(bào)考國(guó)防專(zhuān)業(yè)的學(xué)生的身高的樣本數(shù)據(jù)來(lái)估計(jì)該市的總體情況,現(xiàn)從該市報(bào)考國(guó)防專(zhuān)業(yè)的學(xué)生中任選4人,設(shè)ξ表示身高不低于175cm的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.點(diǎn)P(x,y)是圓x2+(y-1)2=1內(nèi)部的點(diǎn),則y≥x的概率$\frac{3}{4}+\frac{1}{2π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下面幾種推理過(guò)程是演繹推理的是( 。
A.某校高三8個(gè)班,1班51人,2班53人,3班52人,由此推測(cè)各班人數(shù)都超過(guò)50人
B.由三角形的性質(zhì),推測(cè)空間四面體的性質(zhì)
C.平行四邊形的對(duì)角線互相平分,菱形是平行四邊形,所以菱形的對(duì)角線互相平分
D.在數(shù)列{an}中,${a_1}=1,{a_n}=\frac{1}{2}({{a_{n-1}}+\frac{1}{{{a_{n-1}}}}})({n≥2})$,通過(guò)計(jì)算a2,a3,a4推理出{an}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.PM2.5是指大氣中直徑≤2.5微米的顆粒物,其濃度是監(jiān)測(cè)環(huán)境空氣質(zhì)量的重要指標(biāo).當(dāng)PM2.5日均值在0~35(單位為微米/立方米,下同)時(shí),空氣質(zhì)量為優(yōu),在35~75時(shí)空氣質(zhì)量為良,超過(guò)75時(shí)空氣質(zhì)量為污染.某旅游城市2016年春節(jié)7天假期里每天的PM2.5的監(jiān)測(cè)數(shù)據(jù)如莖葉圖所示.
(Ⅰ)以上述數(shù)據(jù)統(tǒng)計(jì)的相關(guān)頻率作為概率,求該市某天空氣質(zhì)量為污染的概率;
(Ⅱ)某游客在此春節(jié)假期間有2天來(lái)該市旅游,已知這2天該市空氣質(zhì)量均不為污染,求這2天中空氣質(zhì)量都為優(yōu)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則A,ω的值分別為( 。
A.2,2B.2,1C.4,2D.2,4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知A(1,-2),B(4,0),P(a,1),N(a+1,1),若四邊形PABN的周長(zhǎng)最小,則△APN的外接圓的圓心坐標(biāo)是$(3,-\frac{9}{8})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,∠B=45°,$b=\sqrt{10},sinC=\frac{{\sqrt{5}}}{5}$.
(1)求邊長(zhǎng)a;  
(2)設(shè)AB中點(diǎn)為D,求中線CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)F2與拋物線y2=4x的焦點(diǎn)重合,過(guò)F2作與x軸垂直的直線l與橢圓交于S、T兩點(diǎn),與拋物線交于C、D兩點(diǎn),且$\frac{|CD|}{|ST|}=2\sqrt{2}$
(Ⅰ)求橢圓E的方程;
(Ⅱ)若過(guò)點(diǎn)M(2,0)的直線與橢圓E相交于兩點(diǎn)A,B,設(shè)P為橢圓E上一點(diǎn),且滿(mǎn)足$\overrightarrow{OA}+\overrightarrow{OB}=t\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),當(dāng)|AB|<$\frac{{2\sqrt{5}}}{3}$時(shí),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案