【題目】變量X與Y相對應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量U與V相對應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示變量Y與X之間的線性相關(guān)系數(shù),r2表示變量V與U之間的線性相關(guān)系數(shù),則
A. r2<r1<0 B. r2<0<r1 C. 0<r2<r1 D. r2=r1
【答案】B
【解析】分析:求兩組數(shù)據(jù)的相關(guān)系數(shù)的大小和正負,可以詳細的解出這兩組數(shù)據(jù)的相關(guān)系數(shù),現(xiàn)分別求出兩組數(shù)據(jù)的兩個變量的平均數(shù),利用相關(guān)系數(shù)的個數(shù)代入求出結(jié)果,進行比較.
詳解:變量X與Y相對應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),
可得:變量Y與X之間成正相關(guān),因此;
變量U與V相對應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),
可得:變量V與U之間成負相關(guān),因此
第一組數(shù)據(jù)的系數(shù)大于0,第二組數(shù)據(jù)的相關(guān)系數(shù)小于0.
故選:B.
科目:高中數(shù)學 來源: 題型:
【題目】某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負,設(shè)這支籃球隊與其他籃球隊比賽中獲勝的事件是獨立的,并且獲勝的概率均為.
(1)求這支籃球隊首次獲勝前己經(jīng)負了兩場的概率;
(2)求這支籃球隊在6場比賽中恰好獲勝3場的概率;
(3)求這支籃球隊在6場比賽中獲勝場數(shù)的均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓C過定點F(2,0),且與直線x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線l交E與P,Q兩點,且線段PQ的中心點坐標(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,平面,底面為菱形,且有,,是線段上一點,且與所成角的正弦值是.
(1)求的大小;
(2)若與平面所成的角的正弦值是,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓經(jīng)過定點,且與定直線相切.
(1)求動圓圓心的軌跡方程;
(2)已知點,過點作直線與交于,兩點,過點作軸的垂線分別與直線,交于點,(為原點),求證:為線段中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)復(fù)數(shù)β=x+yi(x,y∈R)與復(fù)平面上點P(x,y)對應(yīng).
(1)若β是關(guān)于t的一元二次方程t2﹣2t+m=0(m∈R)的一個虛根,且|β|=2,求實數(shù)m的值;
(2)設(shè)復(fù)數(shù)β滿足條件|β+3|+(﹣1)n|β﹣3|=3a+(﹣1)na(其中n∈N*、常數(shù)),當n為奇數(shù)時,動點P(x、y)的軌跡為C1.當n為偶數(shù)時,動點P(x、y)的軌跡為C2.且兩條曲線都經(jīng)過點,求軌跡C1與C2的方程;
(3)在(2)的條件下,軌跡C2上存在點A,使點A與點B(x0,0)(x0>0)的最小距離不小于,求實數(shù)x0的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com