【題目】四棱錐中,平面,底面為菱形,且有,,是線段上一點,且所成角的正弦值是.

1)求的大。

2)若與平面所成的角的正弦值是,求的值.

【答案】1;(2

【解析】

1)記相交于點的中點為,連結(jié)所成的角就是所成的角,解即可;

2)取的中點,易得平面,平面平面,在平面內(nèi)作,則平面,故與平面所成的角的正弦值,設(shè),再分別求出代入即可.

1)記相交于點,的中點為,連結(jié),∴

所成的角就是所成的角,

平面,∴,

,∴,,

中,

(舍),

,∴,

是菱形,∴

2)取的中點,連結(jié),∵為正三角形,∴,且

又∵平面,∴平面平面,交線為,

平面,∴平面平面,交線為

在平面內(nèi)作,則平面,

與平面所成的角的正弦值,

設(shè),則,∴,且,則,

中,,

,解得(舍去),

所以若與平面所成的角的正弦值是,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是以為直徑的半圓上異于點的點,矩形所在的平面垂直于該半圓所在平面,且

(Ⅰ)求證:

(Ⅱ)設(shè)平面與半圓弧的另一個交點為,

求證://;

,求三棱錐E-ADF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在心理學(xué)研究中,常采用對比試驗的方法評價不同心理暗示對人的影響,具體方法如下:將參加試驗的志愿者隨機分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對比這兩組志愿者接受心理暗示后的結(jié)果來評價兩種心理暗示的作用.現(xiàn)有6名男志愿者A1,A2A3,A4A5,A64名女志愿者B1B2,B3,B4,從中隨機抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.

(1)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率;

(2)X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】變量XY相對應(yīng)的一組數(shù)據(jù)為(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);變量UV相對應(yīng)的一組數(shù)據(jù)為(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示變量YX之間的線性相關(guān)系數(shù),r2表示變量VU之間的線性相關(guān)系數(shù),則

A. r2<r1<0 B. r2<0<r1 C. 0<r2<r1 D. r2r1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有三張形狀、大小、質(zhì)地完全一致的卡片,在每張卡片上寫上01,2,現(xiàn)從中任意抽取一張,將其上數(shù)字記作x,然后放回,再抽取一張,其上數(shù)字記作y,令.求:

1所取各值的分布列;

2)隨機變量的數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求上的最小值;

2)若的兩個不同的極值點,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求直線的普通方程和曲線的直角坐標(biāo)方程;

2)設(shè)點,直線與曲線的交點為、,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國著名數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個大于的偶數(shù)可以表示為兩個素數(shù)的和”( 注:如果一個大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個整數(shù)為素數(shù)),在不超過的素數(shù)中,隨機選取個不同的素數(shù),則的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若時,直線與函數(shù)圖象有三個相異的交點,求實數(shù)的取值范圍;

2)討論的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案