【題目】已知在△ABC中,角A、B、C所對應(yīng)的邊為a,b,c. (I)若sin(A+ )= cosA,求A的值;
(Ⅱ)若cosA= ,b=3c,求sinC的值.
【答案】解:(I)∵sin(A+ )= cosA, ∴ sinA+ cosA= cosA,解得:tanA= ,
∴由A∈(0,π),可得:A= .
(Ⅱ)∵cosA= ,b=3c,
∴a2=b2+c2﹣2bccosA=8c2 ,
∴a= c,而sinA= = ,
由正弦定理得: ,
∴sinC= .
【解析】(I)利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值,同角三角函數(shù)基本關(guān)系式化簡已知可得:tanA= ,結(jié)合范圍A∈(0,π),即可解得A的值.(Ⅱ)利用同角三角函數(shù)基本關(guān)系式可求sinA,利用余弦定理可求a= c,利用正弦定理即可求得sinC的值.
【考點精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識點,需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,M是PD的中點.
(1)求證:平面ABM⊥平面PCD;
(2)求直線CD與平面ACM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題12分)已知且,函數(shù), ,
記
(1)求函數(shù)的定義域及其零點;
(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的左右焦點分別為F1 , F2 , 點 為短軸的一個端點,∠OF2B=60°.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,過右焦點F2 , 且斜率為k(k≠0)的直線l與橢圓C相交于D,E兩點,A為橢圓的右頂點,直線AE,AD分別交直線x=3于點M,N,線段MN的中點為P,記直線PF2的斜率為k′.試問kk′是否為定值?若為定值,求出該定值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一年級的A,B,C三個班共有學(xué)生120人,為調(diào)查他們的體育鍛煉情況,用分層抽樣的方法從這三個班中分別抽取4,5,6名學(xué)生進(jìn)行調(diào)查. (Ⅰ)求A,B,C三個班各有學(xué)生多少人;
(Ⅱ)記從C班抽取學(xué)生的編號依次為C1 , C2 , C3 , C4 , C5 , C6 , 現(xiàn)從這6名學(xué)生中隨機(jī)抽取2名做進(jìn)一步的數(shù)據(jù)分析.
(i)列出所有可能抽取的結(jié)果;
(ii)設(shè)A為事件“編號為C1和C2的2名學(xué)生中恰有一人被抽到”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 在上單調(diào)遞增,
(1)若函數(shù)有實數(shù)零點,求滿足條件的實數(shù)的集合;
(2)若對于任意的時,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={x|﹣2<x<2},N={x|x2﹣2x﹣3<0},則集合M∩N=( )
A.{x|x<﹣2}
B.{x|x>3}
C.{x|﹣1<x<2}
D.{x|2<x<3}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場預(yù)算用5600元購買單價為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥數(shù)不少于鉀肥數(shù),且不多于鉀肥數(shù)的1.5倍.
(Ⅰ)設(shè)買鉀肥x噸,買氮肥y噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(Ⅱ)已知A(10,0),O是坐標(biāo)原點,P(x,y)在(Ⅰ)中的可行域內(nèi),求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com