【題目】設(shè)a∈R,若x>0時均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,則a=

【答案】
【解析】解:(1)a=1時,代入題中不等式明顯不成立.(2)a≠1,構(gòu)造函數(shù)y1=(a﹣1)x﹣1,y2=x 2﹣ax﹣1,它們都過定點P(0,﹣1).考查函數(shù)y1=(a﹣1)x﹣1:令y=0,得M( ,0),∴a>1;考查函數(shù)y2=x2﹣ax﹣1,∵x>0時均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,∴y2=x2﹣ax﹣1過點M( ,0),代入得: ,解之得:a= ,或a=0(舍去).故答案為:

分類討論,(1)a=1;(2)a≠1,在x>0的整個區(qū)間上,我們可以將其分成兩個區(qū)間,在各自的區(qū)間內(nèi)恒正或恒負,即可得到結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,﹣ <φ< )的圖象如圖所示,為得到的g(x)=Acosωx的圖象,可以將f(x)的圖象(
A.向左平移
B.向左平移
C.向右平移
D.向右平移

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C: =1(a>b>0)的左,右焦點分別是F1 , F2 , 且離心率為 ,點P為橢圓上一動點,△F1PF2內(nèi)切圓面積的最大值是
(1)求橢圓C的方程;
(2)A是橢圓C的左頂點,斜率為k(k>0)的直線交C于A.M兩點,點N在C上,MA⊥NA,且|AM|=|AN|.求△AMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O:x2+y2=4與x軸相交于A,B兩點,圓內(nèi)的動點P使|PA|、|PO|、|PB|成等比數(shù)列,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鈍角三角形ABC的面積是 ,AB=1,BC= ,則AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A、B、C所對應(yīng)的邊為a,b,c. (I)若sin(A+ )= cosA,求A的值;
(Ⅱ)若cosA= ,b=3c,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,﹣2),橢圓E: 的離心率為 ,F(xiàn)是橢圓E的右焦點,直線AF的斜率為 ,O為坐標(biāo)原點.
(1)求橢圓E的方程;
(2)設(shè)過點A的動直線與橢圓E相交于P,Q兩點,當(dāng)△OPQ的面積最大時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,a,b,c分別是角A,B,C所對的邊,已知向量 =(cosA,sinA), =(cosB,﹣sinB),且| |=1.
(1)求角C的度數(shù);
(2)若c=3,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案