如圖,已知四棱錐P—ABCD中,底面ABCD是直角梯長(zhǎng),AB//CD,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1。

(1)求證:BC⊥平面PAC;

(2)若M是PC的中點(diǎn),求三棱錐M—ACD的體積。

 

【答案】

(1)見(jiàn)解析;(2)

【解析】本試題主要是考查了立體幾何中線面垂直的判定定理和錐體體積公式的運(yùn)用。

(1)因?yàn)樵谥苯翘菪蜛BCD中,過(guò)C做于點(diǎn)E,則四邊形ADCE為矩形,關(guān)鍵是證明,得到線面垂直。

(2)是PC中點(diǎn)

到面ADC的距離是P到面ADC距離的一半,從而得到高度,結(jié)合底面積得到體積。

解:(1)證明:在直角梯形ABCD中,過(guò)C做于點(diǎn)E,則四邊形ADCE為矩形

…3分

…………4分

…………6分

平面ABCD,……7分

,平面APC…………9分

(2)是PC中點(diǎn)

到面ADC的距離是P到面ADC距離的一半…………10分

…………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),
求證:
(1)PC∥平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC、PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)設(shè)AB=2,若H為線段PD上的動(dòng)點(diǎn),EH與平面PAD所成的最大角的正切值為
6
2
,求AP的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD的底面為菱形,∠BCD=60°,PD⊥AD.點(diǎn)E是BC邊上的中點(diǎn).
(1)求證:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED; ②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•崇明縣二模)如圖,已知四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,E、F分別是BC,PC的中點(diǎn),AB=2,AP=2.
(1)求證:BD⊥平面PAC;
(2)求二面角E-AF-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•吉林二模)如圖,已知四棱錐P-ABCD的底面是正方形,PA⊥面ABCD,且PA=AD=2,點(diǎn)M,N分別在PD,PC上,
PN
=
1
2
NC
,PM=MD.
(Ⅰ) 求證:PC⊥面AMN;
(Ⅱ)求二面角B-AN-M的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案