15.要得到函數(shù)y=-cos2x的圖象,只需將函數(shù)y=sin(2x-$\frac{π}{4}$)的圖象(  )
A.向右平移$\frac{π}{8}$個(gè)單位B.向左平移$\frac{π}{8}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單位D.向右平移$\frac{π}{4}$個(gè)單位

分析 由條件利用誘導(dǎo)公式,以及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:∵y=sin(2x-$\frac{π}{4}$)=cos($\frac{π}{2}$-2x+$\frac{π}{4}$)=cos2(x-$\frac{3π}{8}$),
y=-cos2x=cos(π-2x)=cos2(x-$\frac{π}{2}$)=cos2(x-$\frac{3π}{8}$-$\frac{π}{8}$),
∴要得到函數(shù)y=-cos2x的圖象,只需將函數(shù)y=sin(2x-$\frac{π}{4}$)的圖象向右平移$\frac{π}{8}$個(gè)單位.
故選:A.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.公比為2的等比數(shù)列{an} 的各項(xiàng)都是正數(shù),且a3a11=16,則a5=( 。
A.4B.2C.1D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.拋物線y2=2px上橫坐標(biāo)為4的點(diǎn)到此拋物線焦點(diǎn)的距離為9,則該拋物線的焦點(diǎn)到準(zhǔn)線的距離為(  )
A.4B.9C.10D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知傾斜角為θ的直線,與直線x-3y+1=0垂直,則$\frac{2}{{3{{sin}^2}θ-{{cos}^2}θ}}$=( 。
A.$\frac{10}{3}$B.一$\frac{10}{3}$C.$\frac{10}{13}$D.一$\frac{10}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知y=x2+2ax+1
(1)若當(dāng)x∈[-1,2]時(shí),y的最大值為4,求a.
(2)若當(dāng)a∈[-1,2]時(shí),y的最大值為4,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.點(diǎn)P在邊長為2的正方形ABCD內(nèi)運(yùn)動(dòng),則動(dòng)點(diǎn)P到定點(diǎn)A的距離|PA|<1的概率為( 。
A.$\frac{π}{4}$B.$\frac{π}{16}$C.$\frac{1}{4}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a>0,a≠1,設(shè)p:函數(shù)y=ax在x∈(-∞,+∞)上單調(diào)遞減,q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).若“p∧q”為假命題,“p∨q”為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,某地要在矩形區(qū)域OABC內(nèi)建造三角形池塘OEF,E,F(xiàn)分別在AB,BC邊上,OA=5米,OC=4米,∠EOF=$\frac{π}{4}$,設(shè)CF=x,AE=y.
(1)試用解析式將y表示成x的函數(shù);
(2)求三角形池塘OEF面積S的最小值及此時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“a<2”是“實(shí)系數(shù)一元二次方程x2+ax+1=0有虛根”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案