【題目】2018年2月9-25日,第23屆冬奧會(huì)在韓國平昌舉行.4年后,第24屆冬奧會(huì)將在中國北京和張家口舉行.為了宣傳冬奧會(huì),某大學(xué)在平昌冬奧會(huì)開幕后的第二天,從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對是否收看平昌冬奧會(huì)開幕式情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為,收看開幕式與性別有關(guān)?
(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會(huì)志愿者宣傳活動(dòng).
(ⅰ)問男、女學(xué)生各選取多少人?
(ⅱ)若從這8人中隨機(jī)選取2人到校廣播站開展冬奧會(huì)及冰雪項(xiàng)目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中.
【答案】(1)見解析;(2)(i) 男生有6人,女生有2人. (ii).
【解析】分析:(Ⅰ)因?yàn)?/span>,所以有的把握認(rèn)為,收看開幕式與性別有關(guān);(Ⅱ)(ⅰ)根據(jù)分層抽樣方法得,男生人,女生人; (ⅱ)從人中,選取人的所有情況共有種,其中恰有一名男生一名女生的情況共有種,由古典概型概率公式可得結(jié)果.
詳解:(Ⅰ)因?yàn)?/span>,
所以有的把握認(rèn)為,收看開幕式與性別有關(guān).
(Ⅱ)(ⅰ)根據(jù)分層抽樣方法得,
男生人,女生人,
所以選取的8人中,男生有6人,女生有2人.
(ⅱ)從8人中,選取2人的所有情況共有N=7+6+5+4+3+2+1=28種,
其中恰有一名男生一名女生的情況共有M=6+6=12種,
所以,所求概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義在上且滿足下列兩個(gè)條件:
①對任意都有;
②當(dāng)時(shí),有,
(1)求,并證明函數(shù)在上是奇函數(shù);
(2)驗(yàn)證函數(shù)是否滿足這些條件;
(3)若,試求函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某代賣店代售的某種快餐,深受廣大消費(fèi)者喜愛,該種快餐每份進(jìn)價(jià)為8元,并以每份12元的價(jià)格銷售.如果當(dāng)天19:00之前賣不完,剩余的該種快餐每份以5元的價(jià)格作特價(jià)處理,且全部售完.
(1)若這個(gè)代賣店每天定制15份該種快餐,求該種類型快餐當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量x(單位:份,)的函數(shù)解析式;
(2)該代賣點(diǎn)記錄了一個(gè)月30天的每天19:00之前的銷售數(shù)量該種快餐日需求量,統(tǒng)計(jì)數(shù)據(jù)如下:
日需求量 | 12 | 13 | 14 | 15 | 16 | 17 |
天數(shù) | 4 | 5 | 6 | 8 | 4 | 3 |
以30天記錄的日需求量的頻率作為日需求量發(fā)生的概率,假設(shè)這個(gè)代賣店在這一個(gè)月內(nèi)每天都定制15份該種快餐.
(i)求該種快餐當(dāng)天的利潤不少于52元的概率.
(ii)求這一個(gè)月該種快餐的日利潤的平均數(shù)(精確到0.1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)若平面 平面,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩個(gè)班級均為40人,進(jìn)行一門考試后,按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)試判斷能否有99.5%的把握認(rèn)為“考試成績與班級有關(guān)”?參考公式: ;n=a+b+c+d
P(>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)動(dòng)點(diǎn)在圓上,動(dòng)線段的中點(diǎn)的軌跡為,與直線交點(diǎn)為,且直角坐標(biāo)系中,點(diǎn)的橫坐標(biāo)大于點(diǎn)的橫坐標(biāo),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是亞太區(qū)域國家與地區(qū)加強(qiáng)多邊經(jīng)濟(jì)聯(lián)系、交流與合作的重要組織,其宗旨和目標(biāo)是“相互依存、共同利益,堅(jiān)持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會(huì)議于11月10日至11日在越南峴港舉行.某研究機(jī)構(gòu)為了了解各年齡層對會(huì)議的關(guān)注程度,隨機(jī)選取了100名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,,).
(1)求選取的市民年齡在內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人參與會(huì)議的宣傳活動(dòng),求參與宣傳活動(dòng)的市民中至少有一人的年齡在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(且),.
(1)若函數(shù)在上的最大值為1,求的值;
(2)若存在使得關(guān)于的不等式成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.
(I)請將兩家公司各一名推銷員的日工資(單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;
(II)從兩家公司各隨機(jī)選取一名推銷員,對他們過去100天的銷售情況進(jìn)行統(tǒng)計(jì),得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為(單位: 元),將該頻率視為概率,請回答下面問題:
某大學(xué)畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學(xué)的統(tǒng)計(jì)學(xué)知識為他作出選擇,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com