4.已知{an}是等差數(shù)列,a10=17,其前10項(xiàng)的和S10=80,則其公差d=( 。
A.2B.-2C.-1D.1

分析 由題意可得首項(xiàng)和公差的方程組,解方程組可得.

解答 解:設(shè){an}等差數(shù)列的公差為d,
則由題意可得a10=a1+9d=17,S10=10a1+$\frac{10×9}{2}$d=80,
聯(lián)立可解得d=2
故選:A

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和求和公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知正數(shù)a,b滿足a+b=1,則T=(a+$\frac{1}$)2+(b+$\frac{1}{a}$)2的最小值是$\frac{25}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.歐位在1748年給出的著名公式e=cosθ+isinθ(歐拉公式)是數(shù)學(xué)中最卓越的公式之一,其中,底數(shù)e=2.71828…,根據(jù)歐拉公式e=cosθ-isinθ.任何一個(gè)復(fù)數(shù)z=r(cosθ+isinθ)都呆以表示成z=reiz的形式,我們把這種形式叫做復(fù)數(shù)的指數(shù)形式,若復(fù)數(shù)z1=2ei${\;}^{\frac{π}{3}}$,z2=ei${\;}^{\frac{π}{2}}$,則復(fù)數(shù)z=$\frac{{z}_{1}}{{z}_{2}}$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x-1},x>1}\\{tan(\frac{π}{3}x),x≤1}\end{array}\right.$,則f($\frac{1}{f(2)}$)=( 。
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“m=1”是“復(fù)數(shù)z=m2+mi-1為純虛數(shù)”的(  )
A.充分但不必要條件B.必要但不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x∈N|x≤6},B={x∈R|x2-4x>0},則A∩B=(  )
A.{4,5,6}B.{5,6}C.{x|4<x≤6}D.{x|x<0或4<x≤6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=2sin(2x+φ)(|φ|<$\frac{π}{2}$)圖象經(jīng)過點(diǎn)(0,$\sqrt{3}$),則該函數(shù)圖象的一條對(duì)稱軸方程為( 。
A.x=$\frac{π}{6}$B.x=-$\frac{π}{12}$C.x=$\frac{π}{12}$D.x=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知P1,P2,…,Pn是曲線C:y=$\frac{1}{x}$(x>0)上一系列點(diǎn),且滿足以下條件,過P1作直線l:y=1的垂線.垂足為A1,作線段P1A1的中垂線交曲線C于P2,再過P2作直線l的垂線,垂足為A2,作線段P2A2的中垂線交曲線C于P3,依此類推,設(shè)Pn(an,$\frac{1}{{a}_{n}}$),n=1,2,3…,且a1=$\frac{2}{3}$.
(1)求{an}的通項(xiàng)公式;
(2)求證:an≥-(1+$\frac{1}{{2}^{n}}-\frac{1}{x}$)x2+x對(duì)任意x∈R恒成立;
(3)記數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn>$\frac{{n}^{2}}{n+1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案