分析 由$\frac{2}{x-1}$+1>0,化為:(x+1)(x-1)>0,解得x>1,或x<-1.由x2-(k+3)x+3k<0,因式分解為:(x-3)(x-k)<0,對(duì)k分類討論,利用不等式的解法、集合的運(yùn)算性質(zhì)即可得出.
解答 解:由$\frac{2}{x-1}$+1>0,化為:$\frac{x+1}{x-1}$>0,∴(x+1)(x-1)>0,解得x>1,或x<-1.(*)
由x2-(k+3)x+3k<0,因式分解為:(x-3)(x-k)<0,
k>3時(shí),解得3<x<k,不滿足條件,舍去;
k=3時(shí),不等式的解集為∅,舍去.
k<3時(shí),解得k<x<3,
當(dāng)-1≤k<3時(shí),與(*)聯(lián)立:解得1<x<3,x∈Z,∴滿足{x∈Z|$\frac{2}{x-1}$+1>0且x2-(k+3)x+3k<0}={2},因此-1≤k<3.
當(dāng)-2≤k<-1時(shí),與(*)聯(lián)立:解得k<x<-1或1<x<3,x∈Z,∴滿足{x∈Z|$\frac{2}{x-1}$+1>0且x2-(k+3)x+3k<0}={2},因此-2≤k<-1.
當(dāng)k<-2時(shí),與(*)聯(lián)立:解得k<x<-1或1<x<3,x∈Z,∴滿足{x∈Z|$\frac{2}{x-1}$+1>0且x2-(k+3)x+3k<0}≠{2},舍去.
綜上可得:實(shí)數(shù)k的取值范圍是[-2,3).
故答案為:[-2,3).
點(diǎn)評(píng) 本題考查了不等式的解法、集合的運(yùn)算性質(zhì),考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1}⊆N | B. | ∅∈{x∈R|x2+1=0} | C. | {2,1}={x|x2-3x+2=0} | D. | a∈{a,b,c} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | M=N | B. | M是N的真子集 | C. | N是M的真子集 | D. | M∩N=∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線x=$\frac{5}{12}$π是函數(shù)f(x)的圖象的一條對(duì)稱軸 | |
B. | 函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞減 | |
C. | 函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位可得到y(tǒng)=cos2x的圖象 | |
D. | 函數(shù)f(x)在x∈[0,$\frac{π}{2}$]上的最小值為-1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com