【題目】某校學(xué)生社團(tuán)組織活動(dòng)豐富,學(xué)生會(huì)為了解同學(xué)對(duì)社團(tuán)活動(dòng)的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6組,制成如圖所示頻率分布直方圖.
(1)求圖中x的值;
(2)求這組數(shù)據(jù)的中位數(shù);
(3)現(xiàn)從被調(diào)查的問(wèn)卷滿意度評(píng)分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再?gòu)倪@5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.
【答案】(1)0.02;(2)75;(3)0.4
【解析】
(1)由面積和為1,可解得x的值;
(2)由中位數(shù)兩側(cè)的面積相等,可解得中位數(shù);
(3)列出所有基本事件共10個(gè),其中符合條件的共4個(gè),從而可以解出所求概率.
解:(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.02.
(2)中位數(shù)設(shè)為m,則0.05+0.1+0.2+(m-70)×0.03=0.5,解得m=75.
(3)可得滿意度評(píng)分值在[60,70)內(nèi)有20人,抽得樣本為2人,記為a1,a2
滿意度評(píng)分值在[70,80)內(nèi)有30人,抽得樣本為3人,記為b1,b2,b3,
記“5人中隨機(jī)抽取2人作主題發(fā)言,抽出的2人恰在同一組”為事件A,
基本事件有(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),
(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10個(gè),A包含的基本事件個(gè)數(shù)為4個(gè),
利用古典概型概率公式可知P(A)=0.4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線,.
(1)求直線和直線交點(diǎn)P的坐標(biāo);
(2)若直線l經(jīng)過(guò)點(diǎn)P且在兩坐標(biāo)軸上的截距互為相反數(shù),求直線l的一般式方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)為美化環(huán)境,建設(shè)美麗家園,計(jì)劃在一塊半徑為R(R為常數(shù))的扇形區(qū)域上,建個(gè)矩形的花壇CDEF和一個(gè)三角形的水池FCG.其中,O為圓心,,C,G,F在扇形圓弧上,D,E分別在半徑OA,OB上,記OG與CF,DE分別交于M,N,.
(1)求△FCG的面積S關(guān)于的關(guān)系式,并寫出定義域;
(2)若R=10米,花壇每平方米的造價(jià)是300元,試問(wèn)矩形花壇的最高造價(jià)是多少?(取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)又?/span>:x+my-2m=0與動(dòng)直線:mx-y-4m+2=0相交于點(diǎn)M,記動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)過(guò)點(diǎn)P(-1,0)作曲線C的兩條切線,切點(diǎn)分別為A,B,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓=1(a>b>0)的右焦點(diǎn)為F(2,0),且過(guò)點(diǎn)(2,).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l:y=kx(k>0)與橢圓在第一象限的交點(diǎn)為M,過(guò)點(diǎn)F且斜率為-1的直線與l交于點(diǎn)N,若sin∠FON(O為坐標(biāo)原點(diǎn)),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=nan+n,數(shù)列{bn}的前n項(xiàng)和為Tn,求滿足不等式的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)關(guān)于圓錐曲線的命題,
①雙曲線與橢圓有相同的焦點(diǎn);
②在平面內(nèi),設(shè)為兩個(gè)定點(diǎn),為動(dòng)點(diǎn),且,其中常數(shù)為正實(shí)數(shù),則動(dòng)點(diǎn)的軌跡為橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④過(guò)雙曲線的右焦點(diǎn)作直線交雙曲線于兩點(diǎn),若,則這樣的直線有且僅有3條.
其中真命題的個(gè)數(shù)為( )
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一隧道內(nèi)設(shè)雙行線公路,其截面由一個(gè)長(zhǎng)方形和拋物線構(gòu)成.為保證安全,要求行使車輛頂部(設(shè)為平頂)與隧道頂部在豎直方向上的高度之差至少要有0.5米.若行車道總寬度AB為6米,則車輛通過(guò)隧道的限制高度是______米(精確到0.1米)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱為類同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱為類同學(xué)),現(xiàn)用分層抽樣方法(按類、類分兩層)從該年級(jí)的學(xué)生中共抽取100名同學(xué),如果以身高達(dá)作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生,得到以下列聯(lián)表:
身高達(dá)標(biāo) | 身高不達(dá)標(biāo) | 總計(jì) | |
經(jīng)常參加體育鍛煉 | 40 | ||
不經(jīng)常參加體育鍛煉 | 15 | ||
總計(jì) | 100 |
(Ⅰ)完成上表;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為經(jīng)常參加體育鍛煉與身高達(dá)標(biāo)有關(guān)系(的觀測(cè)值精確到0.001)?
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com