【題目】設f(x)=esinx+e﹣sinx(x∈R),則下列說法不正確的是( )
A.f(x)為R上偶函數(shù)
B.π為f(x)的一個周期
C.π為f(x)的一個極小值點
D.f(x)在區(qū)間 上單調(diào)遞減

【答案】D
【解析】解:A.∵f(x)=esinx+e﹣sinx,

∴f(﹣x)=esin(﹣x)+e﹣sin(﹣x)=esinx+e﹣sinx=f(x),

即f(x)為R上偶函數(shù),故A不符合題意;

B.f(x+π)=esin(x+π)+e﹣sin(x+π)esinx+e﹣sinx=f(x),

故π為f(x)的一個周期,故B不符合題意;

C.f′(x)=cosx(esinx﹣e﹣sinx),

當x∈( ,π)時,f′(x)<0,當x∈(π, )時,f′(x)>0,

故π為f(x)的一個極小值點,故C不符合題意;

D.x∈ 時,f′(x)>0,

故f(x)在區(qū)間 上單調(diào)遞增,故D符合題意;

所以答案是:D.

【考點精析】認真審題,首先需要了解函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱),還要掌握利用導數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減)的相關(guān)知識才是答題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( )
A.f(x)=|x|﹣4
B.y=
C.y=
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四面體S﹣ABC中,若P為棱SC的中點,那么異面直線PB與SA所成的角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F為拋物線E:y2=2px(p>0)的焦點,點A(3,m)在拋物線E上,且|AF|=4.

(1)求拋物線E的方程;
(2)已知點G(﹣1,0),延長AF交拋物線E于點B,證明:以點F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,f′(x)為函數(shù)f(x)的導函數(shù).

(1)若F(x)=f(x)+b,函數(shù)F(x)在x=1處的切線方程為2x+y﹣1=0,求a,b的值;
(2)若f′(x)≤﹣x+ax恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中a>0.
(Ⅰ)當a=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最小值.(其中e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn , 已知a1=1,Sn+1=4an+2(n∈N*).
(1)設bn=an+1﹣2an , 證明數(shù)列{bn}是等比數(shù)列(要指出首項、公比);
(2)若cn=nbn , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當n∈N*時, ,Tn= + + +…+ . (Ⅰ)求S1 , S2 , T1 , T2;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A=[﹣1,3],B=[m,m+6](m∈R).
(1)當m=2時,求A∩(RB);
(2)若A∪B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案