2.已知函數(shù)f(x)=x2-2bx+3,b∈R.
(1)若函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(4,3),求實(shí)數(shù)b的值;
(2)當(dāng)x∈[-1,2]時(shí),函數(shù)y=f(x)的最小值為1,求當(dāng)x∈[-1,2]時(shí),函數(shù)y=f(x)的最大值.

分析 (1)把點(diǎn)的坐標(biāo)代入f(x)計(jì)算;
(2)對(duì)f(x)的對(duì)稱軸與區(qū)間[-1,2]的關(guān)系進(jìn)行分情況討論,判斷f(x)的單調(diào)性,利用單調(diào)性解出b,再求出最大值.

解答 解:(1)把(4,3)代入f(x)得16-8b+3=3,∴b=2.
(2)f(x)的圖象開(kāi)口向上,對(duì)稱軸為x=b.
①若b≤-1,則f(x)在[-1,2]上是增函數(shù),
∴fmin(x)=f(-1)=4+2b=1,解得b=-$\frac{3}{2}$.
∴fmax(x)=f(2)=7-4b=13.
②若b≥2,則f(x)在[-1,2]上是減函數(shù),
∴fmin(x)=f(2)=7-4b=1,解得b=$\frac{3}{2}$(舍).
③若-1<b<2,則f(x)在[-1,b]上是減函數(shù),在(b,2]上增函數(shù).
∴fmin(x)=f(b)=-b2+3=1,解得b=$\sqrt{2}$或b=-$\sqrt{2}$(舍).
∴fmax(x)=f(-1)=4+2b=4+2$\sqrt{2}$.
綜上,當(dāng)b≤-1時(shí),f(x)的最大值為13,當(dāng)-1<b<2時(shí),f(x)最大值為4+2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性與對(duì)稱軸的關(guān)系,分類討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:在調(diào)查某校高一學(xué)生的平均身高時(shí)宜采用系統(tǒng)抽樣;命題q:在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等,則下列命題中為真命題的是( 。
A.¬qB.p∨(¬q)C.(¬p)∧qD.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知奇函數(shù)y=f(x)的圖象關(guān)于直線x=2對(duì)稱,且f(m)=3,則f(m-4)的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知M(4,0),N(1,0),若動(dòng)點(diǎn)P滿足$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{NP}$|.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)點(diǎn)A(0,2),點(diǎn)B是軌跡C上一動(dòng)點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=sin(x-$\frac{π}{3}$)sinx的最大值1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x≤0}\\{{x}^{2}-3ax+a,x>0}\end{array}\right.$有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.($\frac{4}{9}$,1]B.[$\frac{4}{9}$,1]C.($\frac{4}{9}$,+∞)D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}對(duì)任意n∈N*均滿足an+12=an•an+2,a1=2,a4=$\frac{1}{4}$,Sn為{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)an及Sn;
(2)設(shè)數(shù)列{bn+an}是首項(xiàng)為-2,公差為2的等差數(shù)列,求數(shù)列{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等比數(shù)列{an}的首項(xiàng)a1=-4,公比q=$\frac{3}{4}$.試問(wèn):它的第幾項(xiàng)是-$\frac{81}{64}$?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD的底面為矩形,PA⊥底面ABCD,且PA=AD,M為AB的中點(diǎn).
(1)在側(cè)棱PC上是否存在一點(diǎn)N,使MN∥平面PAD?證明你的結(jié)論;
(2)求證:平面PMC⊥平面PCD;
(3)當(dāng)$\frac{AB}{AD}$取何值,平面PAD與平面PMC所成的銳二面角為45°?

查看答案和解析>>

同步練習(xí)冊(cè)答案