分析 利用二倍角公式和輔助角公式化簡,令f(x)=0,合三角函數的性質求解在區(qū)間($\frac{3π}{8}$,$\frac{3π}{4}$)上的值,即零點
解答 解:函數f(x)=sinx(sinx+cosx)-$\frac{1}{2}$=sin2x+sinxcosx=$\frac{1}{2}-\frac{1}{2}$cos2x+$\frac{1}{2}$sin2x$-\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$).
∵x∈($\frac{3π}{8}$,$\frac{3π}{4}$)
∴2x-$\frac{π}{4}$∈($\frac{π}{2}$,$\frac{5π}{4}$)
令f(x)=0,即sin(2x-$\frac{π}{4}$)=0
可得:2x-$\frac{π}{4}$=π,
∴x=$\frac{5π}{8}$.
故答案為:x=$\frac{5π}{8}$.
點評 本題考查了三角函數的化簡能力和性質的運用.屬于基礎題.
科目:高中數學 來源: 題型:解答題
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 10 | ||
女生 | 20 | ||
合計 |
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 有最大值e | B. | 有最大值 $\sqrt{e}$ | C. | 有最小值e | D. | 有最小值 $\sqrt{e}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com