【題目】已知偶函數(shù)滿(mǎn)足:當(dāng)時(shí),,,當(dāng)時(shí),

)求當(dāng)時(shí),的表達(dá)式.

)若直線(xiàn)與函數(shù)的圖象恰好有兩個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

)試討論當(dāng)實(shí)數(shù),滿(mǎn)足什么條件時(shí),函數(shù)個(gè)零點(diǎn)且這個(gè)零點(diǎn)從小到大依次成等差數(shù)列.

【答案】(1).

(2)

(3) 時(shí),時(shí),時(shí),符合題意.

【解析】分析:由題意結(jié)合偶函數(shù)的性質(zhì)可得當(dāng)時(shí),的表達(dá)式為

由題意分類(lèi)討論可得實(shí)數(shù)的取值范圍是

由題意結(jié)合二次函數(shù)的性質(zhì)分類(lèi)討論可得時(shí),時(shí),時(shí),

詳解:)設(shè),則

,

又∵是偶函數(shù),

)(時(shí),,,

,

,

時(shí),滿(mǎn)足題意

綜上,所以

零點(diǎn),,,交點(diǎn)個(gè)且均勻分布,

時(shí)

,,,

時(shí),時(shí),

所以時(shí),

時(shí),時(shí),

時(shí),

,

,

此時(shí)

所以(舍),

,所以時(shí),

時(shí)存在.

綜上:

時(shí),

時(shí),

時(shí),符合題意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為ab,c,已知cos2B+cosB=1-cosAcosC.

(1)求證:a,b,c成等比數(shù)列;

(2)b=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年一交警統(tǒng)計(jì)了某段路過(guò)往車(chē)輛的車(chē)速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

車(chē)速

事故次數(shù)

(1)請(qǐng)畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程

(3)試根據(jù)(2)求出的線(xiàn)性回歸方程,預(yù)測(cè)2017年該路段路況及相關(guān)安全設(shè)施等不變的情況下,車(chē)速達(dá)到時(shí),可能發(fā)生的交通事故次數(shù).

(參考數(shù)據(jù):

[參考公式:]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:實(shí)數(shù)滿(mǎn)足,其中;命題:方程表示雙曲線(xiàn).

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)

【解析】試題分析:

先由命題解;命題

(1)當(dāng),得命題,再由為真,得真且真,即可求解的取值范圍.

(2)由的充分不必要條件,則的充分必要條件,根據(jù)則 ,即可求解實(shí)數(shù)的取值范圍.

試題解析:

命題:由題得,又,解得

命題 ,解得

(1)若,命題為真時(shí), ,

當(dāng)為真,則真且真,

解得的取值范圍是

(2)的充分不必要條件,則的充分必要條件,

設(shè) ,則

∴實(shí)數(shù)的取值范圍是

型】解答
結(jié)束】
19

【題目】已知拋物線(xiàn)頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線(xiàn)上一點(diǎn)到焦點(diǎn)的距離為6.

(1)求此拋物線(xiàn)的方程;

(2)若此拋物線(xiàn)方程與直線(xiàn)相交于不同的兩點(diǎn),且中點(diǎn)橫坐標(biāo)為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,

的面積等于,求;

,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列的前項(xiàng)和為,若數(shù)列的各項(xiàng)按如下規(guī)律排列;有如下運(yùn)算結(jié)論:①;②數(shù)列是等比數(shù)列;③數(shù)列的前項(xiàng)和為;④若存在正整數(shù),使得,則,

其中正確的結(jié)論是________(將你認(rèn)為正確的結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)

(1)求函數(shù)的最大值;

(2)對(duì)于任意,且,是否存在實(shí)數(shù),使

成立,若存在求出的范圍,若不存在,說(shuō)明理由;

(3)若正項(xiàng)數(shù)列滿(mǎn)足,且數(shù)列的前項(xiàng)和為,試判斷

的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|x+5﹣a|
(1)若不等式f(x)﹣|x﹣a|≤2的解集為[﹣5,﹣1],求實(shí)數(shù)a的值;
(2)若x0∈R,使得f(x0)<4m+m2 , 求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C b0)的左、右頂點(diǎn)分別為A1、A2,上、下頂點(diǎn)分別為B2、B1,O為坐標(biāo)原點(diǎn),四邊形A1B1A2B2的面積為4,且該四邊形內(nèi)切圓的方程為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若M、N是橢圓C上的兩個(gè)不同的動(dòng)點(diǎn),直線(xiàn)OM、ON的斜率之積等于,試探求△OMN的面積是否為定值,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案