分析 由k•${C}_{n+1}^{k}$=(n+1)•${C}_{n}^{k-1}$,得$\frac{1}{k}$•${C}_{n}^{k-1}$=$\frac{1}{n+1}$•${C}_{n+1}^{k}$,化簡C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$,求出n的值,再求二項式展開式中系數(shù)最大的項.
解答 解:由k•${C}_{n+1}^{k}$=(n+1)•${C}_{n}^{k-1}$,得$\frac{1}{k}$•${C}_{n}^{k-1}$=$\frac{1}{n+1}$•${C}_{n+1}^{k}$,
∴C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$
=$\frac{1}{n+1}$•${C}_{n+1}^{1}$+$\frac{1}{n+1}$•${C}_{n+1}^{2}$+$\frac{1}{n+1}$•${C}_{n+1}^{3}$+…+$\frac{1}{n+1}$•${C}_{n+1}^{n+1}$
=$\frac{1}{n+1}$•(${C}_{n+1}^{1}$+${C}_{n+1}^{2}$+${C}_{n+1}^{3}$+…+${C}_{n+1}^{n+1}$)
=$\frac{1}{n+1}$•(2n+1-1)=$\frac{31}{n+1}$,
解得n=4;
∴(1+x)2×4的展開式中系數(shù)最大的項為${C}_{8}^{4}$x4=70x4.
故答案為:70x4.
點評 本題考查了二項式定理的應(yīng)用、組合數(shù)的計算公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{1}{4}$] | B. | (0,$\frac{1}{4}$] | C. | (-∞,0]∪[$\frac{1}{4}$,+∞) | D. | (-∞,0)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|0<x<2} | B. | {x|1<x<2} | C. | {x|1≤x<2} | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<$\frac{\sqrt{3}}{3}$ | B. | 0<a≤$\frac{\sqrt{5}}{5}$ | C. | 0<a<$\frac{\sqrt{5}}{5}$ | D. | a≥$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com