6.函數(shù)f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零點(diǎn)之和為0.

分析 確定函數(shù)的奇函數(shù),即可求出函數(shù)f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零點(diǎn)之和.

解答 解:∵f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)
∴f(-x)=sin[2πsin(-x)]=-sin(2πsinx)=-f(x),
∴函數(shù)是奇函數(shù),
函數(shù)f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零點(diǎn)之和為0.
故答案為:0.

點(diǎn)評(píng) 本題考查函數(shù)f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零點(diǎn)之和,確定函數(shù)的奇函數(shù)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{31}{n+1}$,則(1+x)2n的展開式中系數(shù)最大的項(xiàng)為70x4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$\left\{\begin{array}{l}{x-y≥0}\\{3x-y-6≤0}\\{x+y-2≥0}\end{array}\right.$,則z=22x+y的最小值是( 。
A.1B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,則a2016=( 。
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在平面直角坐標(biāo)系xOy中.橢圓C:$\frac{x^2}{2}$+y2=1的右焦點(diǎn)為F,直線為l:x=2
(1)求到點(diǎn)F和直線l的距離相等的點(diǎn)G的軌跡方程.
(2)過點(diǎn)F作直線交橢圓C于點(diǎn)A,B,又直線OA交l于點(diǎn)T,若$\overrightarrow{OT}=2\overrightarrow{OA}$,求線段AB的長(zhǎng);
(3)已知點(diǎn)M的坐標(biāo)為(x0,y0),x0≠0,直線OM交直線$\frac{{{x_0}x}}{2}$+y0y=1于點(diǎn)N,且和橢圓C的一個(gè)交點(diǎn)為點(diǎn)P,是否存在實(shí)數(shù)λ,使得${\overrightarrow{OP}^2}=λ\overrightarrow{OM}•\overrightarrow{ON}$?,若存在,求出實(shí)數(shù)λ;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,某城市有一個(gè)邊長(zhǎng)為4百米的正方形休閑廣場(chǎng),廣場(chǎng)中間陰影部分是一個(gè)雕塑群.建立坐標(biāo)系(單位:百米),則雕塑群的左上方邊緣曲線AB是拋物線y2=4x(1≤x≤3,y≥0)的一段.為方便市民,擬建造一條穿越廣場(chǎng)的直路EF(寬度不計(jì)),要求直路EF與曲線AB相切(記切點(diǎn)為M),并且將廣場(chǎng)分割成兩部分,其中直路EF左上部分建設(shè)為主題陳列區(qū).記M點(diǎn)到OC的距離為m(百米),主題陳列區(qū)的面積為S(萬(wàn)平方米).
(1)當(dāng)M為EF中點(diǎn)時(shí),求S的值;
(2)求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)于任意n∈N*,總有Sn=2(an-1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在ak與ak+1之間插入k個(gè)數(shù),使這k+2個(gè)數(shù)組成等差數(shù)列,當(dāng)公差d滿足3<d<4時(shí),求k的值并求這個(gè)等差數(shù)列所有項(xiàng)的和T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若x,y滿足約束條件$\left\{\begin{array}{l}3x+y-6≥0\\ x-y-2≤0\\ y-3≤0\end{array}\right.$,則z=y-2x的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.將十進(jìn)制數(shù)258化成四進(jìn)制數(shù)是(10002)4

查看答案和解析>>

同步練習(xí)冊(cè)答案