【題目】為了治理空氣污染,某市設(shè)個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、個監(jiān)測站,并以個監(jiān)測站測得的的平均值為依據(jù)播報該市的空氣質(zhì)量.

1)若某日播報的,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;

2)如圖是月份天的的頻率分布直方圖,月份僅有內(nèi).

①某校參照官方公布的,如果周日小于就組織學(xué)生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動的概率;

②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中值都在的概率.

【答案】1;(2)①;②.

【解析】

1)設(shè)重度污染區(qū)平均值為,根據(jù)題意可得出關(guān)于的方程,進而可求得的值;

2)①計算出月份天中不小于的天數(shù),進而可求得該校學(xué)生周日能參加戶外活動的概率;

②由題意可知,上的有天,編號分別設(shè)為、、、、,上的有天,編號設(shè)為,列出所有的基本事件,并確定事件“抽取的這兩天中值都在”所包含的基本事件,利用古典概型的概率公式可求得結(jié)果.

1)設(shè)重度污染區(qū)平均值為,則,解得;

2)①上的有天,

上的有天,

上的有天,

所以月份不小于天的共.

即能參加戶外活動的概率為;

②由①上的有天,編號分別設(shè)為、、、,

上的有天,編號設(shè)為、,

天中抽取兩天有:、、、、、、、

、、、、、、、、、,共.

滿足條件的有、、、、、、、、,共種,

所以滿足條件的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某植物學(xué)家培養(yǎng)出一種觀賞性植物,會開出紅花或黃花,已知該植物第一代開紅花和黃花的概率都是,從第二代開始,若上一代開紅花,則這一代開紅花的概率是,開黃花的概率是;若上一代開黃花,則這一代開紅花的概率是,開黃花的概率是.記第n代開紅花的概率為,第n代開黃花的概率為.

1)求;

2)①證明:數(shù)列為等比數(shù)列;

②第代開哪種顏色花的概率更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是拋物線上的一點,其焦點為點,且拋物線在點處的切線交圓于不同的兩點,.

1)若點,求的值;

2)設(shè)點為弦的中點,焦點關(guān)于圓心的對稱點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省為迎接新高考,擬先對考生某選考學(xué)科的實際得分進行等級賦分,再按賦分后的分?jǐn)?shù)從高分到低分劃AB、CD、E五個等級,考生實際得分經(jīng)賦分后的分?jǐn)?shù)在到1之間.在等級賦分科學(xué)性論證時,對過去一年全省高考考生的該學(xué)科成績重新賦分后進行分析,隨機抽取2000名學(xué)生的該學(xué)科賦分后的成績,得到如下頻率分布直方圖:(不考慮缺考考生的試卷)

附:若XN(μ,σ2),則P(μσXμσ)0.6826,P(μ2σXμ2σ)0.9544P(μ3σXμ3σ)0.9974,14.59,∑(xi)2pi213

1)求這2000名考生賦分后該學(xué)科的平均(同一組中數(shù)據(jù)用該組區(qū)間中點作代表);

2)由頻率分布直方圖可以認(rèn)為,學(xué)生經(jīng)過賦分以后的成績X服從正態(tài)分布XN(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2

(i)利用正態(tài)分布,求P(50.41X79.59);

(ii)某市有20000名高三學(xué)生,記Y表示這20000名高三學(xué)生中賦分后該學(xué)科等級為A(即得分大于79.59)的學(xué)生數(shù),利用(i)的結(jié)果,求EY.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的普通方程為,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)為極點,以軸非負半軸為極軸,建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程和直線的普通方程;

2)設(shè)點的極坐標(biāo)方程為,直線的交點分別為,.當(dāng)為等腰直角三角形時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)共有1000人,其中男生700人,女生300人,為了了解該校學(xué)生每周平均體育鍛煉時間的情況以及經(jīng)常進行體育鍛煉的學(xué)生是否與性別有關(guān)(經(jīng)常進行體育鍛煉是指:周平均體育鍛煉時間不少于4小時),現(xiàn)在用分層抽樣的方法從中收集200位學(xué)生每周平均體育鍛煉時間的樣本數(shù)據(jù)(單位:小時),其頻率分布直方圖如圖.已知在樣本數(shù)據(jù)中,有40位女生的每周平均體育鍛煉時間超過4小時,根據(jù)獨立性檢驗原理(

附:,其中.

0.10

0.05

0.01

0.005

2.706

3.841

6.635

7.879

A.95%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)

B.90%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)

C.90%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時間與性別無關(guān)

D.95%的把握認(rèn)為該校學(xué)生每周平均體育鍛煉時間與性別有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點集,在中隨機取出三個點,則這三個點兩兩之間距離不超過2的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓.

)求橢圓的方程;

)設(shè)為原點,過原點的直線(不與軸垂直)與橢圓交于、兩點,直線軸分別交于點、.問:軸上是否存在定點,使得?若存在,求點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,如下圖就是在平面直角坐標(biāo)系的“心形曲線”,又名RC心形線.如果以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,其RC心形線的極坐標(biāo)方程為.

1)求RC心形線的直角坐標(biāo)方程;

2)已知與直線為參數(shù)),若直線RC心形線交于兩點,,求的值.

查看答案和解析>>

同步練習(xí)冊答案