【題目】某省為迎接新高考,擬先對考生某選考學科的實際得分進行等級賦分,再按賦分后的分數(shù)從高分到低分劃AB、C、D、E五個等級,考生實際得分經(jīng)賦分后的分數(shù)在到1之間.在等級賦分科學性論證時,對過去一年全省高考考生的該學科成績重新賦分后進行分析,隨機抽取2000名學生的該學科賦分后的成績,得到如下頻率分布直方圖:(不考慮缺考考生的試卷)

附:若XN(μ,σ2),則P(μσXμσ)0.6826,P(μ2σXμ2σ)0.9544,P(μ3σXμ3σ)0.9974,14.59,∑(xi)2pi213

1)求這2000名考生賦分后該學科的平均(同一組中數(shù)據(jù)用該組區(qū)間中點作代表)

2)由頻率分布直方圖可以認為,學生經(jīng)過賦分以后的成績X服從正態(tài)分布XN(μσ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2

(i)利用正態(tài)分布,求P(50.41X79.59)

(ii)某市有20000名高三學生,記Y表示這20000名高三學生中賦分后該學科等級為A(即得分大于79.59)的學生數(shù),利用(i)的結(jié)果,求EY.

【答案】12(i)(ii)

【解析】

1)由平均數(shù)的公式直接求解即可;

2(i)由于,所以,再結(jié)合所給的值可求出其概率;

(ii)由于,所以所求的人數(shù)為總數(shù)乘以其概率即可.

解:(1)依題意

.

2)(i)由(1)可知,.

所以.

ii)因為,

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】組成沒有重復(fù)數(shù)字的五位數(shù)abcde,其中隨機取一個五位數(shù),滿足條件的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱中,,D,E,F分別為線段,,的中點.

1)證明:平面;

2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,平面分別是,的中點,點在線段上,.

(1)求證:平面;

(2)若平面平面,,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.

(1)求直線的極坐標方程和曲線的參數(shù)方程;

(2)若,直線與曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動點與定點的距離和該動點到直線的距離的比是常數(shù)

1)求動點軌跡方程;

2)已知點,問在軸上是否存在一點,使得過點的任一條斜率不為0的弦交曲線兩點,都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了治理空氣污染,某市設(shè)個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、、個監(jiān)測站,并以個監(jiān)測站測得的的平均值為依據(jù)播報該市的空氣質(zhì)量.

1)若某日播報的,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;

2)如圖是月份天的的頻率分布直方圖,月份僅有內(nèi).

①某校參照官方公布的,如果周日小于就組織學生參加戶外活動,以統(tǒng)計數(shù)據(jù)中的頻率為概率,求該校學生周日能參加戶外活動的概率;

②環(huán)衛(wèi)部門從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進行研究,求抽取的這兩天中值都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,,點,,分別是棱的中點.

1)求證:平面;

2)求證:直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面,,,.

1)求多面體的體積;

2)已知是棱的中點,在棱是否存在點使得,若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案