【題目】已知點(diǎn)是拋物線(xiàn)上的一點(diǎn),其焦點(diǎn)為點(diǎn),且拋物線(xiàn)在點(diǎn)處的切線(xiàn)交圓于不同的兩點(diǎn),.

1)若點(diǎn),求的值;

2)設(shè)點(diǎn)為弦的中點(diǎn),焦點(diǎn)關(guān)于圓心的對(duì)稱(chēng)點(diǎn)為,求的取值范圍.

【答案】12

【解析】

1)利用導(dǎo)數(shù)求出過(guò)點(diǎn)的拋物線(xiàn)的切線(xiàn),切線(xiàn)與圓相交,根據(jù)弦心距、半徑、弦長(zhǎng)的關(guān)系求解即可;

2)設(shè)點(diǎn),聯(lián)立切線(xiàn)與圓的方程消元可得一元二次方程,由韋達(dá)定理求出中點(diǎn)的坐標(biāo),由兩點(diǎn)間距離公式表示出,令換元,利用函數(shù)的單調(diào)性即可求出取值范圍.

設(shè)點(diǎn),其中.

因?yàn)?/span>,所以切線(xiàn)的斜率為,于是切線(xiàn).

1)因?yàn)?/span>,于是切線(xiàn).

故圓心到切線(xiàn)的距離為.

于是.

2)聯(lián)立.

設(shè),,..

解得

,于是.

于是.

的焦點(diǎn),于是.

.

,則.于是.

因?yàn)?/span>單調(diào)遞減,在單調(diào)遞增.

又當(dāng)時(shí),;當(dāng)時(shí),;

當(dāng)時(shí),.

所以的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省即將實(shí)行新高考,不再實(shí)行文理分科.某校為了研究數(shù)學(xué)成績(jī)優(yōu)秀是否對(duì)選擇物理有影響,對(duì)該校2018級(jí)的1000名學(xué)生進(jìn)行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:

1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;

選物理

不選物理

總計(jì)

數(shù)學(xué)成績(jī)優(yōu)秀

數(shù)學(xué)成績(jī)不優(yōu)秀

260

總計(jì)

600

1000

2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與選物理有關(guān)?

附:

臨界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面為平行四邊形,,且,,是棱的中點(diǎn).

1)求證:平面;

2)求直線(xiàn)與平面所成角的正弦值;

3)在線(xiàn)段上(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱中,,D,E,F分別為線(xiàn)段,,的中點(diǎn).

1)證明:平面;

2)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),

(1)求的單調(diào)區(qū)間和極值;

(2)證明:若存在零點(diǎn),則在區(qū)間上僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面,,分別是,,的中點(diǎn),點(diǎn)在線(xiàn)段上,.

(1)求證:平面;

(2)若平面平面,,,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的參數(shù)方程;

(2)若,直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了治理空氣污染,某市設(shè)個(gè)監(jiān)測(cè)站用于監(jiān)測(cè)空氣質(zhì)量指數(shù),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有、個(gè)監(jiān)測(cè)站,并以個(gè)監(jiān)測(cè)站測(cè)得的的平均值為依據(jù)播報(bào)該市的空氣質(zhì)量.

1)若某日播報(bào)的,已知輕度污染區(qū)平均值為,中度污染區(qū)平均值為,求重試污染區(qū)平均值;

2)如圖是月份天的的頻率分布直方圖,月份僅有內(nèi).

①某校參照官方公布的,如果周日小于就組織學(xué)生參加戶(hù)外活動(dòng),以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶(hù)外活動(dòng)的概率;

②環(huán)衛(wèi)部門(mén)從月份不小于的數(shù)據(jù)中抽取兩天的數(shù)據(jù)進(jìn)行研究,求抽取的這兩天中值都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上且滿(mǎn)足點(diǎn)的軌跡為.

1)求曲線(xiàn)的極坐標(biāo)方程;

2)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案