【題目】相傳古代印度國王在獎賞他聰明能干的宰相達依爾(國際象棋發(fā)明者),問他需要什么,達依爾說:“國王只要在國際象棋棋盤的第一格子上放一粒麥子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64(國際象棋棋盤格數(shù)是8×8=64),我就感恩不盡,其他什么也不要了.國王想:“這才有多少,還不容易!”于是讓人扛來一袋小麥,但不到一會兒就用完了,再來一袋很快又沒有了,結(jié)果全印度的糧食用完還不夠,國王很奇怪,怎么也算不清這筆賬.請你設(shè)計一個程序框圖表示其算法,來幫國王計算一下需要多少粒小麥.

【答案】見解析.

【解析】試題分析:依題目可知,問題是求1+2+22+…+263的和的問題,我們引入一個累加變量S,一個計數(shù)變量i,累加64次就能求其和

試題解析:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)滿足

(1)求證,并求的取值范圍;

(2)證明函數(shù)內(nèi)至少有一個零點;

(3)設(shè)是函數(shù)的兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把一枚質(zhì)地均勻的骰子投擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.已知方程組

(1)求方程組只有一個解的概率;

(2)若方程組每個解對應(yīng)平面直角坐標系中的點P(x,y),求點P落在第四象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】唐三彩,中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術(shù)的特點,在中國文化中占有重要的歷史地位,在中國的陶瓷史上留下了濃墨重彩的一筆,唐三彩的生產(chǎn)至今已有1300多年的歷史,對唐三彩的復(fù)制和仿制工藝,至今也有百余年的歷史.某陶瓷廠在生產(chǎn)過程中,對仿制的100件工藝品測得其重量(單位;kg)數(shù)據(jù),將數(shù)據(jù)分組如下表:

(1)在答題卡上完成頻率分布表;

(2)重量落在中的頻率及重量小于2.45的頻率是多少?

(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值是作為代表.據(jù)此,估計這100個數(shù)據(jù)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn及使得Sn最大的序號n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ax+ ,g(x)=ex﹣3ax,a>0,若對x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,則實數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點是直線上的一動點,過點作圓的切線,切點為.

(1)當(dāng)切線的長度為時,求線段PM長度.

(2)的外接圓為圓,試問:當(dāng)在直線上運動時,圓是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由;

(3)求線段長度的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)前,網(wǎng)購已成為現(xiàn)代大學(xué)生的時尚。某大學(xué)學(xué)生宿舍4人參加網(wǎng)購,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去哪家購物,擲出點數(shù)為5或6的人去淘寶網(wǎng)購物,擲出點數(shù)小于5的人去京東商城購物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購物

1求這4個人中恰有1人去淘寶網(wǎng)購物的概率;

2分別表示這4個人中去淘寶網(wǎng)和京東商城購物的人數(shù),,求隨機變量的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人要對C處進行考察,甲在A處,乙在B處,基地在O處,此時∠AOB=90°,測得|AC|=5 km,|BC|=km,|AO|=|BO|=2 km,如圖所示,試問甲、乙兩人應(yīng)以什么方向走,才能使兩人的行程之和最?

查看答案和解析>>

同步練習(xí)冊答案