【題目】已知為坐標(biāo)原點(diǎn),橢圓的左、右焦點(diǎn)分別為右頂點(diǎn)為,上頂點(diǎn)為, 成等比數(shù)列,橢圓上的點(diǎn)到焦點(diǎn)的最短距離為

1求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)為直線(xiàn)上任意一點(diǎn),過(guò)的直線(xiàn)交橢圓于點(diǎn),且,求的最小值

【答案】12

【解析】

試題分析:1利用已知條件,算出,再由,求出,寫(xiě)出橢圓方程;2,設(shè),直線(xiàn)的方程為,聯(lián)立直線(xiàn)的方程與橢圓的方程, 消去,根據(jù)韋達(dá)定理,求出的表達(dá)式,利用基本不等式求出最小值

試題解析:解:1易知,

,

故橢圓的標(biāo)準(zhǔn)方程為

21,,設(shè),

直線(xiàn)的斜率為,

當(dāng)時(shí),直線(xiàn)的斜率為,直線(xiàn)的方程為;

當(dāng)時(shí),直線(xiàn)的方程為,也符合方程

設(shè),將直線(xiàn)的方程與橢圓的方程聯(lián)立,得消去,得:,,

當(dāng)且僅當(dāng)時(shí),等號(hào)成立

的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的對(duì)稱(chēng)軸為.

1)求函數(shù)的最小值及取得最小值時(shí)的值;

2)試確定的取值范圍,使至少有一個(gè)實(shí)根;

3)當(dāng)時(shí),,對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量X~N(μ,σ2),且其正態(tài)曲線(xiàn)在(-∞,80)上是增函數(shù),在(80,+∞)上為減函數(shù),且P(72≤X≤88)=0.682 6.

(1)求參數(shù)μ,σ的值;

(2)求P(64<X≤72).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù)滿(mǎn)足不等式函數(shù)無(wú)極值點(diǎn)

1為假命題,為真命題,求實(shí)數(shù)的取值范圍;

2已知為真命題,并記為,且,若的必要不充分條件,求正整數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1求函數(shù)的單調(diào)區(qū)間;

2若存在,使得是自然對(duì)數(shù)的底數(shù),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了日至日的每天晝夜溫差與實(shí)驗(yàn)室每天每顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫度x

10

11

13

12

8

發(fā)芽數(shù)y

23

25

30

26

16

設(shè)農(nóng)科所確定的研究方案是:先從這組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線(xiàn)性回歸方程,再對(duì)被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn)

1求選取的組數(shù)據(jù)恰好是不相鄰天數(shù)據(jù)的概率;

2若選取的是日與日的兩組數(shù)據(jù),請(qǐng)根據(jù)日與日的數(shù)據(jù),求關(guān)于的線(xiàn)性回歸方程

3若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)顆,則認(rèn)為得到的線(xiàn)性回歸方程是可靠的,試問(wèn)2中所得的線(xiàn)性回歸方程是否可靠?

注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊的一角開(kāi)辟為水果園種植桃樹(shù),已知角,的長(zhǎng)度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆

1若圍墻 長(zhǎng)度為米,如何圍可使得三角形地塊的面積最大?

2已知段圍墻高米,段圍墻高米,造價(jià)均為每平方米若圍圍墻用了元,問(wèn)如何圍可使竹籬笆用料最省?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,點(diǎn)是棱的中點(diǎn),,平面平面

(Ⅰ)求證://平面

(Ⅱ)求證:平面;

(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫(xiě)出的一個(gè)值(只需寫(xiě)出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

試求:(1)y與x之間的回歸方程;

(2)當(dāng)使用年限為10年時(shí),估計(jì)維修費(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案