設(shè),若直線與軸相交于點(diǎn),與軸相交于,且與圓相交所得弦的長為2,為坐標(biāo)原點(diǎn),則面積的最小值為_________.
3
【解析】
試題分析:直線與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)為,
直線與圓相交所得的弦長為2,圓心到直線的距離滿足,
所以,即圓心到直線的距離,
所以.
三角形的面積為,又,
當(dāng)且僅當(dāng)時取等號,所以最小值為.
考點(diǎn):本小題主要考查直線與圓的位置關(guān)系、三角形面積公式和基本不等式的應(yīng)用,考查學(xué)生綜合運(yùn)用所學(xué)知識解決問題的能力和運(yùn)算求解能力.
點(diǎn)評:解決直線與圓的位置關(guān)系的題目時,一般用幾何法可以簡化運(yùn)算;用基本不等式時,一定要注意“一正二定三相等”三個條件缺一不可,而且還要交代清楚取等號的條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè),若直線與軸相交于點(diǎn)A,與y軸相交于B,且l與圓相交所得弦的長為2,O為坐標(biāo)原點(diǎn),則面積的最小值為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建省清流一中高三第三階段(12月)文科考試數(shù)學(xué)試卷(帶解析) 題型:解答題
設(shè),若直線與軸相交于點(diǎn),與軸相交于,且與圓相交所得弦的長為2,為坐標(biāo)原點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市順義區(qū)高三年級第二次統(tǒng)練文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),若直線與軸相交于點(diǎn),與軸相交于點(diǎn),且坐標(biāo)原點(diǎn)到
直線的距離為,則面積的最小值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(天津卷解析版) 題型:填空題
設(shè),若直線與軸相交于點(diǎn)A,與y軸相交于B,且l與圓相交所得弦的長為2,O為坐標(biāo)原點(diǎn),則面積的最小值為 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com