下面使用類比推理恰當?shù)氖? (  )
A.“若a·3=b·3,則a=b”類推出“若a·0=b·0,則a=b”
B.“(a+b)c=ac+bc”類推出“
C.“(a+b)c=ac+bc”類推出“(c≠0)”
D.“(ab)n=anbn”類推出“(a+b)n = an+bn
C
解:由于類比推理從一個事物的特殊性質(zhì)得到另一類事物的特殊性質(zhì),那么推理正確的是(a+b)c=ac+bc”類推出“ =  (c≠0)”,選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.
(1) 求出,并猜測的表達式;
(2) 求證:+…+

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

命題:“正弦函數(shù)是奇函數(shù),是正弦函數(shù),因此是奇函數(shù)”結(jié)論是錯誤的,其原因是(   ) 
A.大前提錯誤B.小前提錯誤C.推理形式錯誤D.以上都不是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

考察下列式子:;;
;得出的結(jié)論是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是等比數(shù)列,是互不相等的正整數(shù),則有正確的結(jié)論:.類比上述性質(zhì),相應地,若是等差數(shù)列,是互不相等的正整數(shù),則有正確的結(jié)論:                                        .  .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下圖是選修1-2第二章“推理與證明”的知識結(jié)構(gòu)圖,如果要加入“綜合法”,則應該放在(  )
 
A.“合情推理”的下位B.“演繹推理”的下位
C.“直接證明”的下位D.“間接證明”的下位

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.現(xiàn)有5男6女共11個小孩做如下游戲:先讓4個小孩(不全是男孩)等距離站在一個圓周的4個位置上,如果相鄰兩個小孩同為男孩或同為女孩,則在他(她)們中間站進一個男孩,否則站進一個女孩,然后讓原來的4個小孩暫時退出,即算一次活動.這種活動按上述規(guī)則繼續(xù)進行,直至圓周上所站的4個小孩都是男孩為止.這樣的活動最多可以進行( )
A.2次B.3次C.4次D.5次

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

兩千多年前,古希臘畢達哥拉斯學派的數(shù)學家曾經(jīng)在沙灘上研究數(shù)學問題,他們在沙灘上畫點或用小石子來表示數(shù),按照點或小石子能排列的形狀對數(shù)進行分類,如圖1中的實心點個數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個五角形數(shù)記作,第2個五角形數(shù)記作,第3個五角形數(shù)記作,第4個五角形數(shù)記作,……,若按此規(guī)律繼續(xù)下去,則 ,若,則 

1         5             12                22

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知球O是棱長為12的正四面體S-ABC的外接球,D,E,F分別是棱SA,SB,SC的中點,則平面DEF截球O所得截面的面積是__________

查看答案和解析>>

同步練習冊答案