【題目】如圖,已知拋物線,為的焦點(diǎn),為準(zhǔn)線,且與軸的交點(diǎn)為.過(guò)點(diǎn)任意作一條直線交拋物線于兩點(diǎn).
(1)若 ,求證:;
(2)設(shè)為線段的中點(diǎn),為奇質(zhì)數(shù),且點(diǎn)到軸的距離和點(diǎn)到準(zhǔn)線的距離均為非零整數(shù).求證:點(diǎn)到坐標(biāo)原點(diǎn)的距離不可能是整數(shù).
【答案】(1)見解析;(2)見解析
【解析】
(1)點(diǎn)的坐標(biāo)為,設(shè)過(guò)點(diǎn)的直線方程為.代入,得 ①
設(shè),則、是方程①的兩個(gè)根,有,.
由,得.
因?yàn)?/span>
又 ,,,所以
.
故.
(2)設(shè).依題意均為非零整數(shù).
由對(duì)稱性,不妨設(shè),則. ②
因?yàn)辄c(diǎn)在線段上,所以
. ③
由式②、③消去,得
④
假設(shè)為正整數(shù),則
⑤
因?yàn)?/span>為奇質(zhì)數(shù),由式④知,,從而.
于是,由式⑤知.
令,, ,則
.
消去,得,即
.
又與有相同的奇偶性,且,所以,
解得,.
從而,.于是,,這與為正整數(shù)矛盾.
故點(diǎn)到坐標(biāo)原點(diǎn)的距離不可能是整數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|ax2+2x+1=0,a∈R},
(1)若A只有一個(gè)元素,試求a的值,并求出這個(gè)元素;
(2)若A是空集,求a的取值范圍;
(3)若A中至多有一個(gè)元素,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)統(tǒng)計(jì),某5家鮮花店今年4月的銷售額和利潤(rùn)額資料如下表:
鮮花店名稱 | A | B | C | D | E |
銷售額x(千元) | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額y(千元) | 2 | 3 | 3 | 4 | 5 |
(1)用最小二乘法計(jì)算利潤(rùn)額y關(guān)于銷售額x的回歸直線方程=x+;
(2)如果某家鮮花店的銷售額為8千元時(shí),利用(1)的結(jié)論估計(jì)這家鮮花店的利潤(rùn)額是多少.
參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)值公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,橢圓上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線 與橢圓交于兩點(diǎn),點(diǎn)(0,1),且=,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線不與坐標(biāo)軸垂直,且與拋物線有且只有一個(gè)公共點(diǎn).
(1)當(dāng)點(diǎn)的坐標(biāo)為時(shí),求直線的方程;
(2)設(shè)直線與軸的交點(diǎn)為,過(guò)點(diǎn)且與直線垂直的直線交拋物線于,兩點(diǎn).當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬(wàn)只)與時(shí)間(年)(其中)的關(guān)系為.為有效控制有害昆蟲數(shù)量、保護(hù)生態(tài)環(huán)境,環(huán)保部門通過(guò)實(shí)時(shí)監(jiān)控比值(其中為常數(shù),且)來(lái)進(jìn)行生態(tài)環(huán)境分析.
(1)當(dāng)時(shí),求比值取最小值時(shí)的值;
(2)經(jīng)過(guò)調(diào)查,環(huán)保部門發(fā)現(xiàn):當(dāng)比值不超過(guò)時(shí)不需要進(jìn)行環(huán)境防護(hù).為確保恰好3年不需要進(jìn)行保護(hù),求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中常數(shù)
(1)當(dāng)時(shí),討論的單調(diào)性
(2)當(dāng)時(shí),是否存在整數(shù)使得關(guān)于的不等式在區(qū)間內(nèi)有解?若存在,求出整數(shù)的最小值;若不存在,請(qǐng)說(shuō)明理由.
參考數(shù)據(jù):,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓的方程;
(2)若圓與直線交于,兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一汽車廠生產(chǎn),,三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號(hào),某月的產(chǎn)量如下表(單位:輛):按類用分層抽樣的方法在這個(gè)月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
(1)求的值;
(2)用分層抽樣的方法在類轎車中抽取一個(gè)容量為5的樣本.將該樣本看成一個(gè)總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機(jī)抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測(cè)它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把這8輛轎車的得分看作一個(gè)總體,從中任取一個(gè)得分?jǐn)?shù),記這8輛轎車的得分的平均數(shù)為,定義事件,且函數(shù)沒(méi)有零點(diǎn),求事件發(fā)生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com