1.持續(xù)性的霧霾天氣嚴(yán)重威脅著人們的身體健康,汽車的尾氣排放是造成霧霾天氣的重要因素之一.為此,某城市實(shí)施了機(jī)動(dòng)車尾號(hào)限行,該市報(bào)社調(diào)查組為了解市區(qū)公眾對(duì)“車輛限行”的態(tài)度,隨機(jī)選取了30人進(jìn)行調(diào)查,將他們的年齡(單位:歲)數(shù)據(jù)繪制成頻率分布直方圖(圖1),并將調(diào)查情況進(jìn)行整理后制成表2:
表2:
年齡(歲)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
頻數(shù)3663
贊成人數(shù)245421
(Ⅰ)由于工作人員粗心,不小心將表2弄臟,遺失了部分?jǐn)?shù)據(jù),請(qǐng)同學(xué)們將表2中的數(shù)據(jù)恢復(fù),并估計(jì)該市公眾對(duì)“車輛限行”的贊成率和被調(diào)查者的年齡平均值;
(Ⅱ)把頻率當(dāng)作概率估計(jì)贊成車輛限行的情況,若從年齡在[55,65),[65,75]的被調(diào)查者中隨機(jī)抽取一個(gè)人進(jìn)行追蹤調(diào)查,求被選2人中至少一個(gè)人贊成車輛限行的概率.

分析 (Ⅰ)由頻率分布圖和頻數(shù)分布表得填表數(shù)值分別是9和3,由此能求出平均年齡和贊成率.
(Ⅱ)[55,65)中3人設(shè)為A,a1,a2表示贊成,利用列舉法能求出被選2人中至少一個(gè)人贊成車輛限行的概率.

解答 解:(Ⅰ)由頻率分布圖和頻數(shù)分布表得填表數(shù)值分別是9和3,
平均年齡是:20×0.1+30×0.2+40×0.3+50×0.2+60×0.1+70×0.1=43(歲),
贊成率是:p=$\frac{2+4+5+4+2+1}{30}$=$\frac{18}{30}=\frac{3}{5}$.
(Ⅱ)[55,65)中3人設(shè)為A,a1,a2表示贊成,
各抽取一人所有事件為:
AB1,AB2,Ab,a1B1,a1B2,a1b,a2B1,a2B2,a2b,共9個(gè),
設(shè)“被選2人中至少有一個(gè)人贊成車輛限行”為事件M,
則事件M包含的基本事件有7個(gè),
∴被選2人中至少一個(gè)人贊成車輛限行的概率P(M)=$\frac{7}{9}$.

點(diǎn)評(píng) 本題考查頻率分布圖和頻數(shù)分布表的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率公式、列舉法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=lnx的反函數(shù)為G(x),函數(shù)g(x)=$\frac{{e}^{ax}}{x}$在[1,+∞)上是增函數(shù).
(Ⅰ)求實(shí)數(shù)a的最小值;
(Ⅱ)若x0是f(x)=$\frac{1}{G(x)}$的根且x0∈(1,2),當(dāng)a=1時(shí),函數(shù)m(x)=min{xf(x),$\frac{1}{g(x)}$}的圖象與直線y=n(n∈R)在(1,+∞)上的交點(diǎn)的橫坐標(biāo)為x1,x2(x1<x2),證明:x1+x2>2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\frac{1}{2}$,則|$\overrightarrow{a}$-2$\overrightarrow$|=( 。
A.1B.$\sqrt{3}$C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知$\overrightarrow{OA}$=(cos2x,-1),$\overrightarrow{OB}$=(1,sin2x+$\sqrt{3}$sin2x)(x∈R),若f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$,則函數(shù)f(x)的最小正周期( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.當(dāng)雙曲線M:$\frac{{x}^{2}}{{m}^{2}}$-$\frac{{y}^{2}}{2m+4}$=1(-2<m<0)的焦距取得最小值時(shí),雙曲線M的漸近線方程為( 。
A.y=±$\sqrt{2}x$B.y=±$\frac{\sqrt{2}}{2}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線l與平面α相交但不垂直,m為空間內(nèi)一條直線,則下列結(jié)論一定不成立的是( 。
A.m⊥l,m?αB.m⊥l,m∥αC.m∥l,m∩α≠∅D.m⊥l,m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知(a$\sqrt{x}$+$\frac{\sqrt{3}}{x}$)6(a>0)展開式中的常數(shù)項(xiàng)是5,則a=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.某次數(shù)學(xué)測驗(yàn),12名同學(xué)分?jǐn)?shù)的莖葉圖如圖:則這些分?jǐn)?shù)的中位數(shù)是80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.8B.13C.21D.34

查看答案和解析>>

同步練習(xí)冊答案