數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926033480.png)
前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926080297.png)
項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926096633.png)
,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926096487.png)
滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926127646.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926127695.png)
),
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926033480.png)
的通項(xiàng)公式;
(2)求證:當(dāng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926158505.png)
時,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926174583.png)
為等比數(shù)列;
(3)在題(2)的條件下,設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926096487.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926080297.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926220373.png)
,若數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926236492.png)
中只有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926252361.png)
最小,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926267325.png)
的取值范圍.
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926298955.png)
;(2)詳見解析;(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926314591.png)
。
試題分析:(1)本小題主要利用數(shù)列公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240249263301109.png)
,可以求得數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926033480.png)
的通項(xiàng)公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926298955.png)
;
(2)本小題通過分析
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240249263761574.png)
可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926392933.png)
,根據(jù)等比數(shù)列的定義可以判定
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926174583.png)
是以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926408434.png)
為首項(xiàng)、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926423328.png)
為公比的等比數(shù)列;
(3)本小題首先求得數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926096487.png)
的通項(xiàng)公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240249264541182.png)
,然后根據(jù)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926236492.png)
中只有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926252361.png)
最小可以得出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926501759.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926314591.png)
.
試題解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926298955.png)
; 4分
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240249265481588.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926392933.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926579541.png)
,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926174583.png)
是以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926408434.png)
為首項(xiàng)、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926423328.png)
為公比的等比數(shù)列; 8分
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240249264541182.png)
; 10分
因?yàn)閿?shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926236492.png)
中只有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926252361.png)
最小,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926501759.png)
,解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926314591.png)
; 13分
此時,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926720503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240249267351107.png)
,
于是,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926096487.png)
為遞增數(shù)列,
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926766418.png)
時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926782484.png)
、
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926782426.png)
時
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926798492.png)
,符合題意,
綜上
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024926314591.png)
。 15分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941618456.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941633297.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941649367.png)
.且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941664826.png)
.
(1)求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941618456.png)
的通項(xiàng)公式;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941696552.png)
,數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941711421.png)
滿足:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941727469.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941742604.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941742556.png)
,求數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941758618.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941789306.png)
項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024941789355.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640018501.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640033301.png)
項(xiàng)和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640049957.png)
.設(shè)公差不為零的等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640065505.png)
滿足:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640080581.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640096688.png)
成等比.
(Ⅰ) 求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640111286.png)
及
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640143370.png)
;
(Ⅱ) 設(shè)數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640158751.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640033301.png)
項(xiàng)和為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640252365.png)
.求使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640283519.png)
的最小正整數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024640033301.png)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025332982473.png)
的遞推公式
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240253329971518.png)
,則
;數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025332982473.png)
中第8個5是該數(shù)列的第
項(xiàng)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025102753457.png)
中,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025102769371.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025102769872.png)
,則該數(shù)列的通項(xiàng)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025102785373.png)
________________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024824054465.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024824070277.png)
項(xiàng)和是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024824086366.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024824101553.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024824117374.png)
N
*,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024824132461.png)
),則必定有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
各項(xiàng)都是正數(shù)的等比數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024250307480.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024250323712.png)
成等差數(shù)列,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024250339677.png)
( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025924310388.png)
是等差數(shù)列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025924310481.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025924326297.png)
項(xiàng)和,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025924341678.png)
,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025924357347.png)
等于( )
查看答案和解析>>