函數(shù)f(x)=log2x-
2
x
+a的一個零點在(1,4)內(nèi),則實數(shù)a的取值范圍為( 。
A、(-
3
2
,2)
B、(4,6)
C、(2,4)
D、(-3,-
3
2
考點:函數(shù)零點的判定定理
專題:計算題,函數(shù)的性質(zhì)及應用
分析:由題意可知函數(shù)f(x)=log2x-
2
x
+a在[1,4]上單調(diào)遞增且連續(xù),從而求解.
解答: 解:易知函數(shù)f(x)=log2x-
2
x
+a在[1,4]上連續(xù),
且函數(shù)f(x)=log2x-
2
x
+a在[1,4]上單調(diào)遞增,
故f(1)•f(4)<0,
即(0-2+a)(2-
1
2
+a)<0;
故實數(shù)a的取值范圍為(-
3
2
,2);
故選A.
點評:本題考查了函數(shù)的零點判定定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2x-3
(1)求函數(shù)y=f(|x|)的值域并寫出單調(diào)區(qū)間;
(2)討論函數(shù)y=|f(x)|與y=m+1交點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cosθ,sinθ)和
n
=(
2
-sinθ,cosθ),θ=(π,2π),且|
m
+
n
|=
8
2
5
,則cos(
θ
2
+
π
8
)的值是( 。
A、-
4
5
B、-
3
5
C、
4
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直角坐標系xOy中,點A,B分別在曲線C1
x=3+cosθ
y=4+sinθ
(θ為參數(shù))上,則|AB|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果x2+y2=1,求3x-4y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知橢圓的焦點為(-
3
,0)(
3
,0),離心率為
3
2

(1)求橢圓的方程;
(2)若圓M:x2+(y-m)2=1上的點到橢圓上的點的最遠距離為
5
+1,求m的值;
(3)過坐標原點作斜率為k的直線l交橢圓于P、Q兩點,點N為橢圓上任意一點(異于點P,Q),設直線NP,NQ的斜率均存在且分別記為kNp,kNQ.證明:對任意k,恒有kNPkNQ=-
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設拋物線C:x2=4y的焦點為F,P(x0,y0)為拋物線上的任一點(其中x0≠0),過P點的切線交y軸于Q點.
(1)若P(2,1),求證|FP|=|FQ|;
(2)已知M(0,y0),過M點且斜率為
x0
2
的直線與拋物線C交于A、B兩點,若
AM
MB
(λ>1),求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三條直線x=2,x-y-1=0,x+ky=0相交于一點,則實數(shù)k=( 。
A、2
B、
1
2
C、-2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓x2+
y2
k
=1的一個焦點是(0,
5
),那么k=( 。
A、-6
B、6
C、
5
+1
D、1-
5

查看答案和解析>>

同步練習冊答案