【題目】已知x,y∈R,滿足2≤y≤4﹣x,x≥1,則 的最大值為

【答案】
【解析】解:由2≤y≤4﹣x,x≥1,作出可行域如圖, 令t= ,其幾何意義為可行域內(nèi)的動點(x,y)與定點P(﹣1,1)連線的斜率,
聯(lián)立 ,解得A(1,3),
聯(lián)立 ,解得B(2,2).
,
∴t∈[ ,1].

= =
設(shè)f(t)= ,則由“對勾函數(shù)”的單調(diào)性可知,f(t)= 在[ ,1]上為減函數(shù),
∴當t= 時,
所以答案是:

【考點精析】認真審題,首先需要了解函數(shù)的最值及其幾何意義(利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的對角線相交于點,將沿對角線折起,使得平面平面(如圖),則下列命題中正確的是( )

A. 直線直線,且直線直線

B. 直線平面,且直線平面

C. 平面平面,且平面平面

D. 平面平面,且平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱 ,側(cè)面 .
(Ⅰ)若 分別是 的中點,求證: ;
(Ⅱ)若三棱柱 的各棱長均為2,側(cè)棱 與底面 所成的角為 ,問在線段 上是否存在一點 ,使得平面 ?若存在,求 的比值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我們可以用隨機模擬的方法估計π的值,如圖程序框圖表示其基本步驟(函數(shù)RAND是產(chǎn)生隨機數(shù)的函數(shù),它能隨機產(chǎn)生(0,1)內(nèi)的任何一個實數(shù)).若輸出的結(jié)果為521,則由此可估計π的近似值為(
A.3.119
B.3.126
C.3.132
D.3.151

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)的內(nèi)角所對的邊分別是,且的等差中項.

(Ⅰ)求角

(Ⅱ)設(shè),求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過 做拋物線 的兩條切線,切點分別為 , .若 .
(1)求拋物線 的方程;
(2) ,過 任做一直線交拋物線 , 兩點,當 也變化時,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數(shù)學偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:

學生序號

1

2

3

4

5

6

7

8

數(shù)學偏差x

20

15

13

3

2

-5

-10

-18

物理偏差y

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

(1)已知xy之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;

(2)若這次考試該班數(shù)學平均分為118分,物理平均分為90.5,試預(yù)測數(shù)學成績126分的同學的物理成績.

參考公式: ,.

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2
(Ⅰ) 求角A的大;
(Ⅱ) 若b+c=2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過兩點,且圓心在直線.

)求圓的標準方程;

)設(shè)直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.

查看答案和解析>>

同步練習冊答案