【題目】已知x,y∈R,滿足2≤y≤4﹣x,x≥1,則 的最大值為 .
【答案】
【解析】解:由2≤y≤4﹣x,x≥1,作出可行域如圖, 令t= ,其幾何意義為可行域內(nèi)的動點(x,y)與定點P(﹣1,1)連線的斜率,
聯(lián)立 ,解得A(1,3),
聯(lián)立 ,解得B(2,2).
∵ , .
∴t∈[ ,1].
= = .
設(shè)f(t)= ,則由“對勾函數(shù)”的單調(diào)性可知,f(t)= 在[ ,1]上為減函數(shù),
∴當t= 時, .
所以答案是: .
【考點精析】認真審題,首先需要了解函數(shù)的最值及其幾何意義(利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值).
科目:高中數(shù)學 來源: 題型:
【題目】已知正方形的對角線與相交于點,將沿對角線折起,使得平面平面(如圖),則下列命題中正確的是( )
A. 直線直線,且直線直線
B. 直線平面,且直線平面
C. 平面平面,且平面平面
D. 平面平面,且平面平面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱柱 ,側(cè)面 .
(Ⅰ)若 分別是 的中點,求證: ;
(Ⅱ)若三棱柱 的各棱長均為2,側(cè)棱 與底面 所成的角為 ,問在線段 上是否存在一點 ,使得平面 ?若存在,求 與 的比值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我們可以用隨機模擬的方法估計π的值,如圖程序框圖表示其基本步驟(函數(shù)RAND是產(chǎn)生隨機數(shù)的函數(shù),它能隨機產(chǎn)生(0,1)內(nèi)的任何一個實數(shù)).若輸出的結(jié)果為521,則由此可估計π的近似值為( )
A.3.119
B.3.126
C.3.132
D.3.151
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過 做拋物線 的兩條切線,切點分別為 , .若 .
(1)求拋物線 的方程;
(2) , ,過 任做一直線交拋物線 于 , 兩點,當 也變化時,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數(shù)學偏差x(單位:分)與物理偏差y(單位:分)之間的關(guān)系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:
學生序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
數(shù)學偏差x | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差y | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(1)已知x與y之間具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(2)若這次考試該班數(shù)學平均分為118分,物理平均分為90.5,試預(yù)測數(shù)學成績126分的同學的物理成績.
參考公式: ,.
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知sin2 .
(Ⅰ) 求角A的大;
(Ⅱ) 若b+c=2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過兩點,且圓心在直線上.
(Ⅰ)求圓的標準方程;
(Ⅱ)設(shè)直線經(jīng)過點,且與圓相交所得弦長為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com