14.已知X的分布列為
X-101
P$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
設(shè)y=2x+3,則E(Y)的值為( 。
A.$\frac{7}{3}$B.4C.-1D.1

分析 由X的分布列,求出E(X),由Y=2X+3,得E(Y)=2E(X)+3,由此能求出結(jié)果.

解答 解:由X的分布列,得:
E(X)=$-1×\frac{1}{2}+0-\frac{1}{3}+1×\frac{1}{6}$=-$\frac{1}{3}$,
∵Y=2X+3,
∴E(Y)=2E(X)+3=-$\frac{2}{3}+3$=$\frac{7}{3}$.
故選:A.

點(diǎn)評 本題考查離散型隨機(jī)變量的數(shù)學(xué)期望的求法,考查離散型隨機(jī)變量ξ的分布列及數(shù)學(xué)期望等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等差數(shù)列{an}中,a2+a4=5,則a3=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.不等式組$\left\{\begin{array}{l}{{x}^{2}-1<0}\\{{x}^{2}-3x<0}\end{array}\right.$的解集是(  )
A.{x|-1<x<1}B.{x|-1<x<3}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式$\frac{1}{x}≤2$的解集為( 。
A.$[\frac{1}{2},+∞)$B.$(-∞,0)∪[\frac{1}{2},+∞)$C.$(-∞,\frac{1}{2}]$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≤0}\\{x+y-7≤0}\\{x≥1}\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.3B.$\frac{9}{5}$C.6D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線$\frac{y^2}{64}-\frac{x^2}{36}=1$上一點(diǎn)P到它的一個焦點(diǎn)的距離等于3,那么點(diǎn)P與兩個焦點(diǎn)所構(gòu)成的三角形的周長等于42.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高一年級甲班共48人,其中優(yōu)秀生16人,中等生24人,學(xué)困生8人,現(xiàn)采用分層抽樣的方法從這些學(xué)生中抽取6名學(xué)生做學(xué)習(xí)習(xí)慣的調(diào)查.
(1)求應(yīng)從優(yōu)秀生、中等生、學(xué)困生中分別抽取的學(xué)生人數(shù);
(2)若從抽取的6名學(xué)生中隨機(jī)抽取2名學(xué)生做進(jìn)一步的數(shù)據(jù)分析,
①列出所有可能的抽取的結(jié)果;
②求抽取的2名學(xué)生均為中等生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.解下列不等式.
(1)-4x2+12x-9<0;
(2)$\frac{x+1}{2x+1}$≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知兩曲線f(x)=cosx與g(x)=$\sqrt{3}$sinx的一個交點(diǎn)為P,則點(diǎn)P到x軸的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案