已知函數(shù)f(x)=
5+2
3+2x-x2
x+1
+
3-x
的最大值為M,最小值為N,則
M
N
=( 。
A、
2
B、
9
2
10
C、
9
2
8
D、
5
2
+4
10
考點:函數(shù)的最值及其幾何意義
專題:計算題,函數(shù)的性質及應用
分析:由題意,化簡f(x)=
5+2
3+2x-x2
x+1
+
3-x
=
5+2
(3-x)(1+x)
x+1
+
3-x
=
(
x+1
+
3-x
)2+1
x+1
+
3-x
=(
x+1
+
3-x
)+
1
x+1
+
3-x
,利用換元法令u=
x+1
+
3-x
,則2≤u≤2
2
,從而借助對勾函數(shù)的單調性求最值,從而求出答案.
解答: 解:f(x)=
5+2
3+2x-x2
x+1
+
3-x
=
5+2
(3-x)(1+x)
x+1
+
3-x

=
(
x+1
+
3-x
)2+1
x+1
+
3-x

=(
x+1
+
3-x
)+
1
x+1
+
3-x
,
令u=
x+1
+
3-x
,則
2≤u≤2
2

則y=u+
1
u
在[2,2
2
]上是增函數(shù),
故M=
9
2
4
,m=2+
1
2
=
5
2
;
M
N
=
9
2
10
,
故選B.
點評:本題考查了函數(shù)的最值的求法,應用到了分離常數(shù)法,配方法,換元法及函數(shù)的單調性,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在復平面內,復數(shù)z1,z2對應的點分別是(11,-7),(1,-2),且
z1
z2
=x+yi(其中x,y∈R,i為虛數(shù)單位),則x+y的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=6x2-x-2有極
 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,∠BAC=90°,∠ACB=45°,CC1=2AC=4,D為CC1中點.
(1)證明:A1D⊥ABD;
(2)求三棱錐A1-DAB的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)是R上的增函數(shù),且f(sinω)+f(-cosω)>f(cosω)+f(-sinω),其中ω是銳角,并且使得函數(shù)g(x)=sin(ωx+
π
4
)在(
π
2
,π)內單調遞減,則ω的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“嫦娥奔月,舉國歡慶”,據(jù)科學計算,運載“神六”的“長征二號”系列火箭,在點火第一秒鐘通過的路程為2km,在達到離地面240km的高度時,火箭與飛船分離,則這一過程大約需要的時間是
 
秒.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓M與⊙C(x+2)2+y2=2內切,且過點A(2,0),求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
),且y=f(x)的最大值為2,其圖象的相鄰兩對稱軸的距離為4,并過點(1,2).
(1)求φ的值;
(2)計算f(1)+f(2)+…f(2013).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若n∈(-1,2),則方程x2+2x+3n=0有實根的概率為
 

查看答案和解析>>

同步練習冊答案