【題目】已知函數(shù).

1)當時,求上的最值;

2)設集合,若,求m的取值范圍.

【答案】1,.2

【解析】

1)將代入函數(shù),去絕對值化為分段函數(shù),再根據(jù)定義域求最值即得;(2)函數(shù)定義域為R,當時,若成立,可得m的范圍,當x不取零時,根據(jù)分段函數(shù)在各段上的單調(diào)性,求出滿足成立時的,用m表示的x的取值范圍,又由于,由此可得關(guān)于m的不等式,解出m再和m的范圍取交集,即得。

解:(1)當時,,

上遞減,上遞增,

∴當時,,

,

∴當時,.

2)已知滿足,即,可得,

兩段拋物線各自的對稱軸分別為,

上遞減,遞增,上遞減,

①當時,由得:,即,

②當都成立,

③當時,由得:,即

所以,的解集A

,且,又

解得,

所以m的取值范圍是.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若,求證:函數(shù)恰有一個負零點;(用圖象法證明不給分)

2)若函數(shù)恰有三個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為確定下一年投入某種產(chǎn)品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近年投入的年研發(fā)費用與年銷售量的數(shù)據(jù),得到散點圖如圖所示.

(1)利用散點圖判斷(其中均為大于的常數(shù))哪一個更適合作為年銷售量和年研發(fā)費用的回歸方程類型(只要給出判斷即可,不必說明理由)

(2)對數(shù)據(jù)作出如下處理,令,得到相關(guān)統(tǒng)計量的值如下表:根據(jù)第(1)問的判斷結(jié)果及表中數(shù)據(jù),求關(guān)于的回歸方程;

15

15

28.25

56.5

(3)已知企業(yè)年利潤(單位:千萬元)與的關(guān)系為(其中),根據(jù)第(2)問的結(jié)果判斷,要使得該企業(yè)下一年的年利潤最大,預計下一年應投入多少研發(fā)費用?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;

(2)若存在實數(shù)使得關(guān)于的方程有三個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,、分別為橢圓的左、右焦點.設不經(jīng)過焦點的直線與橢圓交于兩個不同的點、,焦點到直線的距離為.若直線、、的斜率依次成等差數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,成等差數(shù)列,,成等比數(shù)列,且,

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列,的通項公式;

)設=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}為等差數(shù)列,數(shù)列{an},{bn}滿足a1=b1=2,b2=6,且an+1bn=anbn+bn+1

(1)求{an}的通項公式;

(2)求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年某地初中畢業(yè)升學體育考試規(guī)定:考生必須參加長跑、擲實心球、1分鐘跳繩三項測試,三項測試各項20分,滿分60分.某學校在初三上學期開始時,為掌握全年級學生1分鐘跳繩情況,按照男女比例利用分層抽樣抽取了100名學生進行測試,其中女生54人,得到下面的頻率分布直方圖,計分規(guī)則如表1

1

每分鐘跳繩個數(shù)

得分

17

18

19

20

1)規(guī)定:學生1分鐘跳繩得分20分為優(yōu)秀,在抽取的100名學生中,男生跳繩個數(shù)大于等于185個的有28人,根據(jù)已知條件完成表2,并根據(jù)這100名學生測試成績,能否有99%的把握認為學生1分鐘跳繩成績優(yōu)秀與性別有關(guān)?

2

跳繩個數(shù)

合計

男生

28

女生

54

合計

100

附:參考公式:

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

2)根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步.假設今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,全年級恰有2000名學生,所有學生的跳繩個數(shù)服從正態(tài)分布(用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,各組數(shù)據(jù)用中點值代替).

①估計正式測試時,1分鐘跳182個以上的人數(shù)(結(jié)果四舍五入到整數(shù));

②若在全年級所有學生中任意選取3人,正式測試時1分鐘跳195個以上的人數(shù)為,求的分布列及期望.

附:若隨機變量服從正態(tài)分布,則,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解兒子身高與其父親身高的關(guān)系,隨機調(diào)查了5對父子的身高,統(tǒng)計數(shù)據(jù)如下表所示.

A

B

C

D

E

父親身高

174

176

176

176

178

兒子身高

175

175

176

177

177

1)從這五對父子任意選取兩對,用編號表示出所有可能取得的結(jié)果,并求隨機事件兩對父子中兒子的身高都不低于父親的身高發(fā)生的概率;

2)由表中數(shù)據(jù),利用最小二乘法關(guān)于的回歸直線的方程.

參考公式:,;回歸直線:

查看答案和解析>>

同步練習冊答案