已知a是第三象限角,且tana=
1
2
,則sina等于( 。
A、-
2
5
5
B、
2
5
5
C、-
5
5
D、
5
5
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由α為第三象限角,且tanα的值,利用同角三角函數(shù)間基本關(guān)系求出cos2α的值,即可確定出sinα的值.
解答:解:∵α是第三象限角,且tanα=
1
2
,
∴cos2α=
1
1+tan2α
=
4
5

則sinα=-
1-cos2α
=-
5
5

故選:C.
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)計(jì)算裝置有兩個(gè)數(shù)據(jù)輸入口Ⅰ、Ⅱ與一個(gè)運(yùn)算結(jié)果輸出口Ⅲ,當(dāng)Ⅰ、Ⅱ分別輸入正整數(shù)m,n時(shí),輸出結(jié)果記為f(m,n),且計(jì)算裝置運(yùn)算原理如下:
①若Ⅰ、Ⅱ分別輸入1,則f(1,1)=1;
②若Ⅰ輸入固定的正整數(shù),Ⅱ輸入的正整數(shù)增大1,則輸出結(jié)果比原來增大3;
③若Ⅱ輸入1,Ⅰ輸入正整數(shù)增大1,則輸出結(jié)果為原來3倍.
試求:
(1)f(m,1)的表達(dá)式(m∈N);
(2)f(m,n)的表達(dá)式(m,n∈N);
(3)若Ⅰ、Ⅱ都輸入正整數(shù)n,則輸出結(jié)果f(n,n)能否為2013?若能,求出相應(yīng)的n;若不能,則請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高中共有學(xué)生3000名,各年級(jí)組成如下:
高一高二高三
女生653xy
男生647450z
已知在全校學(xué)生中隨機(jī)抽取一名,抽到高二年級(jí)女生的概率是0.15
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取30名學(xué)生,應(yīng)從高三抽取多少名;
(3)已知y≥395,z≥395,求高三年級(jí)中女生比男生多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在邊長為2的正三角形內(nèi)隨機(jī)取一個(gè)點(diǎn)A,則點(diǎn)A在此正三角形的內(nèi)切圓的內(nèi)部的概率為(  )
A、
3
π
9
B、
4
3
π
9
C、
3
π
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)角α的終邊與單位圓相交于點(diǎn)P(
3
5
,-
4
5
),則sinα-cosα的值是( 。
A、-
7
5
B、-
1
5
C、
1
5
D、
7
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0°<2α<90°,90°<β<180°,a=(sinα)cosβ,b=(cosα)sinβ,c=(cosα)cosβ,則a、b、c的大小關(guān)系是(  )
A、a>c>bB、a<b<cC、b>a>cD、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,5),
b
=(2,3),則向量2
a
+
b
的坐標(biāo)為( 。
A、(1,3)
B、(2,4)
C、(5,4)
D、(0,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果sin2θ+2sinθ>cos2θ+2cosθ,且θ∈(0,2π),那么角θ的取值范圍是(  )
A、(0,
π
4
B、(
π
2
,
4
C、(
π
4
,
4
D、(
4
,2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

原命題為“若
an+an+1
2
<an,n∈N+,則{an}為遞減數(shù)列”,關(guān)于其逆命題,否命題,逆否命題真假性的判斷依次如下,正確的是( 。
A、真、真、真
B、假、假、真
C、真、真、假
D、假、假、假

查看答案和解析>>

同步練習(xí)冊(cè)答案