若點(diǎn)和點(diǎn)分別為雙曲線)的中心和左焦點(diǎn),點(diǎn)為雙曲線右支上的任意一點(diǎn),則的取值范圍為(   )
A.[3- , B.[3+ ,
C.[, D.[,
B

試題分析: 因?yàn)镕(-2,0)是已知雙曲線的左焦點(diǎn),所以a2+1=4,即a2=3,所以雙曲線方程為
設(shè)點(diǎn)P(x0,y0),則有 (x0),解得y02= (x0),
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000526909408.png" style="vertical-align:middle;" />=(x0+2,y0),=(x0,y0),所以=x0(x0+2)+y02=x0(x0+2)+=+2x0-1,此二次函數(shù)對(duì)應(yīng)的拋物線的對(duì)稱軸為x0=-,因?yàn)閤0
所以當(dāng)x0=時(shí),取得最小值=,故
的取值范圍是[,+∞),選B
點(diǎn)評(píng):解決該試題的關(guān)鍵是先根據(jù)雙曲線的焦點(diǎn)和方程中的b求得a,則雙曲線的方程可得,設(shè)出點(diǎn)P,代入雙曲線方程求得y0的表達(dá)式,根據(jù)P,F(xiàn),O的坐標(biāo)表示出 ,進(jìn)而求得 的表達(dá)式,利用二次函數(shù)的性質(zhì)求得其最小值,則的取值范圍可得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線上一定點(diǎn),作兩條直線分別交拋物線于、.當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí),則的值為(   )
A.B.C.D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓上有n個(gè)不同的點(diǎn):P1 ,P2 ,…,Pn, 橢圓的右焦點(diǎn)為F,數(shù)列{|PnF|}是公差大于的等差數(shù)列, 則n的最大值是(   )
A.198B.199 C.200D.201

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓和雙曲線,有相同的焦點(diǎn),則橢圓與雙曲線的離心率的平方和為( 。
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知雙曲線的一條漸近線方程是,若雙曲線經(jīng)過(guò)點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)直線關(guān)于原點(diǎn)對(duì)稱的直線為,若與橢圓的交點(diǎn)為P、Q, 點(diǎn)M為橢圓上的動(dòng)點(diǎn),則使△MPQ的面積為的點(diǎn)M的個(gè)數(shù)為
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

短軸長(zhǎng)為,離心率的橢圓兩焦點(diǎn)為, 過(guò)作直線交橢圓于 兩
點(diǎn),則的周長(zhǎng)為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦距是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
設(shè)直線與拋物線交于不同兩點(diǎn)A、B,F(xiàn)為拋物線的焦點(diǎn)。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案