16.已知f(x)=1+logx3,g(x)=2logx2,試比較f(x)與g(x)的大小關(guān)系.

分析 由于要比較的兩個(gè)數(shù)都是對(duì)數(shù),我們聯(lián)系到對(duì)數(shù)的性質(zhì),以及對(duì)數(shù)函數(shù)的單調(diào)性,討論即可.

解答 解:(1+logx3)-2logx2=logx $\frac{3x}{4}$,
當(dāng) $\left\{\begin{array}{l}{0<x<1}\\{0<\frac{3}{4}x<1}\end{array}\right.$或 $\left\{\begin{array}{l}{x>1}\\{\frac{3}{4}x>1}\end{array}\right.$,
即0<x<1或x>$\frac{4}{3}$時(shí),
有l(wèi)ogx$\frac{3x}{4}$>0,1+logx3>2logx2,
即f(x)>g(x);
當(dāng) $\left\{\begin{array}{l}{0<x<1}\\{\frac{3}{4}x>1}\end{array}\right.$①或 $\left\{\begin{array}{l}{x>1}\\{0<\frac{3}{4}x<1}\end{array}\right.$②時(shí),
logx$\frac{3x}{4}$<0.
解①得無解,解②得1<x<$\frac{4}{3}$,
即當(dāng)1<x<$\frac{4}{3}$時(shí),有l(wèi)ogx$\frac{3x}{4}$<0,
1+logx3<2logx2,
即f(x)<g(x),
當(dāng)$\frac{3}{4}$x=1,即x=$\frac{4}{3}$時(shí),有l(wèi)ogx$\frac{3x}{4}$=0.
∴1+logx3=2logx2,
即f(x)=g(x),
綜上所述,當(dāng)0<x<1或x>$\frac{4}{3}$時(shí),f(x)>g(x);
當(dāng)1<x<$\frac{4}{3}$時(shí),f(x)<g(x);
當(dāng)x=$\frac{4}{3}$時(shí),f(x)=g(x).

點(diǎn)評(píng) 本題考查對(duì)數(shù)函數(shù)的性質(zhì),作差法,分類討論的思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,內(nèi)角A,B,C所對(duì)的三邊分別是a,b,c,已知a=5,b=6,C=30°,則$\overrightarrow{BC}•\overrightarrow{CA}$=-15$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,∠ABC=90°,AB=$\sqrt{3}$,BC=2,點(diǎn)P為△ABC內(nèi)一點(diǎn),若∠BPC=90°,PB=1,則PA=( 。
A.4-$\sqrt{3}$B.$\frac{{\sqrt{7}}}{2}$C.$\sqrt{7}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了調(diào)查高一新生中女生的體重情況,校衛(wèi)生室隨機(jī)選20名女生作為樣本,測(cè)量她們的體重(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖所示.已知樣本中體重在區(qū)間(45,50]上的女生數(shù)與體重在區(qū)間(50,55]上的女生數(shù)之比為2:1.
(1)求a,b的值;
(2)從樣本中體重在區(qū)間(50,60]上的女生中隨機(jī)抽取兩人,求體重在區(qū)間(55,60]上的女生至少有一人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+2|-2|x-1|.
(1)解不等式f(x)≥-2;
(2)對(duì)任意x∈R,都有f(x)≤x-a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖2,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,CC1=AB=AC=2,∠BAC=90°,D為BC的中點(diǎn).

(Ⅰ)如圖1給出了該三棱柱三視圖中的正視圖,請(qǐng)據(jù)此在框內(nèi)對(duì)應(yīng)位置畫出它的側(cè)視圖;
(Ⅱ)求證:A1C∥平面AB1D;
(Ⅲ)(文科做)若點(diǎn)P是線段A1C上的動(dòng)點(diǎn),求三棱錐P-AB1D的體積.
(理科做)求二面角B-AB1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知a${\;}^{\frac{1}{2}}$-a${\;}^{-\frac{1}{2}}$=3,求:
①a+a-1;
②a${\;}^{\frac{3}{2}}$-a${\;}^{-\frac{3}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在△ABC中,AB=2,AC=3,BC=$\sqrt{7}$,P,Q為BC邊上的動(dòng)點(diǎn)且BP=CQ,則$\overrightarrow{AP}$•$\overrightarrow{AQ}$的最大值為$\frac{19}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖是某直三棱柱被削去上底后的直觀圖與三視圖的側(cè)視圖、俯視圖,在直觀圖中,M是BD的中點(diǎn),AE=$\frac{1}{2}$CD,側(cè)視圖是直角梯形,俯視圖是等腰三角形,有關(guān)數(shù)據(jù)如圖所示.

(1)求出該幾何體的體積;
(2)試問在邊CD上是否存在點(diǎn)N,使MN⊥平面BDE?若存在,確定點(diǎn)N的位置(不需證明);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案