1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≥0}\\{1,x<0}\end{array}\right.$,則f[f(-2)]=( 。
A.0B.1C.2D.3

分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≥0}\\{1,x<0}\end{array}\right.$,將x=-2代入可得答案.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x≥0}\\{1,x<0}\end{array}\right.$,
∴f(-2)=1,
f[f(-2)]=f(1)=3,
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)求值,分段函數(shù)的應(yīng)用,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.對(duì)于函數(shù)f(x)=lnx的定義域中任意的x1,x2(x1≠x2),有如下結(jié)論:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0
上述結(jié)論中正確結(jié)論的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.有以下判斷:
①f(x)=$\frac{|x|}{x}$與g(x)=$\left\{{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}}$表示同一函數(shù);
②函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)最多有1個(gè);
③f(x)=x2-2x+1與g(t)=t2-2t+1是同一函數(shù);
④若f(x)=|x-1|-|x|,則f(f($\frac{1}{2}$))=0.
其中正確判斷的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A={x|a≤x≤a+9},B={x|8-b<x<b},M={x|x<-1,或x>5},
(1)若A∪M=R,求實(shí)數(shù)a的取值范圍;
(2)若B∪(∁RM)=B,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2lnx-x2-mx.
(1)當(dāng)m=0時(shí),求函數(shù)f(x)的最大值;
(2)函數(shù)f(x)與x軸交于兩點(diǎn)A(x1,0),B(x2,0)且0<x1<x2,證明:f'($\frac{1}{3}$x1+$\frac{2}{3}$x2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知全集U={x∈Z|1≤x≤5},A={1,2,3},B={1,2},則A∩∁UB=( 。
A.{3}B.{1,3}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列命題錯(cuò)誤的是( 。
A.命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0無(wú)實(shí)數(shù)根,則m≤0”
B.“$θ=\frac{π}{6}$”是“$sin(θ+2kπ)=\frac{1}{2}$”的充分不必要條件
C.若p∧q為假命題,則p,q均為假命題
D.對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知R上的不間斷函數(shù)g(x)滿足:
①當(dāng)x>0時(shí),g'(x)<0恒成立;
②對(duì)任意的x∈R都有g(shù)(-x)=-g(x).函數(shù)f(x)滿足:對(duì)任意的x∈R,都有f($\sqrt{3}$+x)=-f(x)成立,當(dāng)x∈[0,$\sqrt{3}$]時(shí),f(x)=x3-3x.
若關(guān)于x的不等式g[f(x)]≥g(a2-a+2),對(duì)于x∈[-3,3]恒成立,則a的取值范圍為(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.寫(xiě)出命題“矩形的對(duì)角線相等”的否定存在一個(gè)矩形的對(duì)角線不相等.

查看答案和解析>>

同步練習(xí)冊(cè)答案