分析 利用等比數(shù)列的通項(xiàng)公式及兩項(xiàng)間的關(guān)系式可求得數(shù)列{an}的公比、a4及數(shù)列{an}的前n項(xiàng)和為Sn.
解答 解:設(shè)首項(xiàng)為3的等比數(shù)列{an}的公比為q,
則$\frac{{a}_{2n}}{{a}_{n}}$=qn=$\frac{{3}^{4n-1}}{{3}^{2n-1}}$=32n=9n,
∴q=9;
∴a4=3×93=2187;
數(shù)列{an}的前n項(xiàng)和為Sn=$\frac{3×(1-{9}^{n})}{1-9}$=$\frac{3}{8}$×(9n-1).
故答案為:9;2187;$\frac{3}{8}$×(9n-1).
點(diǎn)評 本題考查等比數(shù)列的通項(xiàng)公式、求和公式及兩項(xiàng)間的關(guān)系式的應(yīng)用,考查推理與運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {Sn}是等差數(shù)列 | B. | {Sn2}是等差數(shù)列 | C. | {dn}是等差數(shù)列 | D. | {dn2}是等差數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | e3 | C. | 4 | D. | e4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com