19.若sinα+2sin2$\frac{α}{2}$=2(0<α<π),則tanα的值為(  )
A.1B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$D.不存在

分析 利用二倍角的余弦函數(shù)化簡已知條件,然后求解所求表達式的值.

解答 解:sinα+2sin2$\frac{α}{2}$=2(0<α<π),
可得sinα+2sin2$\frac{α}{2}$-1=1(0<α<π),
即sinα-cosα=1(0<α<π),
可得α=$\frac{π}{2}$.
則tanα的值為:不存在.
故選:D.

點評 本題考查二倍角公式的應用,三角函數(shù)的化簡求值,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點P在拋物線y2=4x上,它到拋物線焦點的距離為5,那么點P的坐標為(  )
A.(4,4),(4,-4)B.(-4,4),(-4,-4)C.(5,$2\sqrt{5}$),(5,$-2\sqrt{5}$)D.(-5,$2\sqrt{5}$),(-5,$-2\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=2,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=-2,則|2$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.2B.$2\sqrt{3}$C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若曲線f(x)=ex+$\frac{m}{x}$在(-∞,0)上存在垂直y軸的切線,則實數(shù)m的取值范圍為( 。
A.(-∞,$\frac{4}{{e}^{2}}$]B.(0,$\frac{4}{{e}^{2}}$]C.(-∞,4]D.(0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知拋物線y2=2px(p>0),過焦點F,且傾斜角為60°的直線與拋物線在第一象限交于點M,若|FM|=4,則拋物線方程為y2=4x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知平行四邊形ABCD中,AC=3,BD=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設點P是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與圓x2+y2=a2+b2在第一象限內(nèi)的交點,F(xiàn)1,F(xiàn)2分別是雙曲線的左右焦點且|PF1|=3|PF2|,則雙曲線的離心率為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y≥0\\ x+y≤2\\ y≥0\end{array}\right.$,則點P(x,y)所在區(qū)域的面積是1;若z=ax+y的最大值為4,則實數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知長方形ABCD中,AB=2AD,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(Ⅰ)求證:AD⊥BM;
(Ⅱ)若E是線段DB上的一動點,問點E在何位置時,三棱錐E-ADM的體積與四棱錐D-ABCM的體積之
比為1:3?

查看答案和解析>>

同步練習冊答案